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This paper reviews the recent development of portfolio insur-
ance. An option replication strategy is one of the optimal invest-
ment policies for the long-term investor and is widely discussed
among academics and practitioners. Investor utility maximization
as well as non-preference approaches have played major roles in
this development. Cox’s and Leland’s concepts of self-financing
and path-independence, and the Dybvig payoff-pricing distribution
model are attractive tools to analyze the efficiency of dynamic in-
vestment strategies. Unfortunately, the financial industry does not
actively use these approaches. This paper explains the basic prop-
erties of a complete market, and the efficiency and effectiveness of
option replication strategies for novice researchers and practition-
ers. These concepts have strong relationship with the delta, gamma,
and theta of options, and are extremely important for the practical
application of portfolio insurance.

1 Developments in portfolio insurance

Portfolio insurance is a dynamic investment strategy that limits downside risk to
the value of a reference portfolio while providing potential gains from upward
trends for the price of the insurance premium. An insured portfolio holds a
combination of a reference portfolio and its put option, and can be replicated
by dynamically holding the reference portfolio and a risk-free asset. This is
known as option based portfolio insurance (OBPI), introduced by Leland and
Rubinstein [33][34], and Brennan and Schwartz [9].

The analysis of a dynamic investment strategy has assumed frictionless mar-
kets and unconstrained borrowing. Merton [36][37] solved this problem in a
continuous time model under the assumption of the hyperbolic absolute risk
aversion (HARA) utility. The price movement of a risky asset is assumed to
follow a geometric Brownian motion with a constant mean and variance. Black
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[4] extends Merton’s analysis of certain dynamic properties of the simple in-
vestment and consumption problem by assuming a completely general utility
function. This led to a simple solution of protecting the value of a reference
portfolio corresponding to the HARA utility function. Another classic problem
is a portfolio turnpike theory that discusses the necessary and sufficient condi-
tions for optimizing a long-term investor’s utility function. The analysis was
contributed by Cox and Huang [14], Hakansson [27], Huberman and Ross [28],
Leland [30], and Mossin [42]. In 1986, Perold [39] extended this work and intro-
duced constant proportion portfolio insurance (CPPI) for a fixed-income bond.
Black and Jones [5] applied CPPI to the S&P 500 Index. Black and Perold [6]
developed the theory of the CPPI.

In 1973, Black and Scholes [7] provided a pricing formula for options on
a risky asset assuming a complete market. The Black-Scholes (BS) model is
particularly useful because it is a complete general equilibrium formulation of
the problem. This opened the door to asset valuation by computing the ex-
pected value of the terminal payoff based on the risk-adjusted probability1. It
introduced the hedging strategy for holding option positions by dynamically
allocating a risk-free asset and an underlying risky asset. The value of these
hedged portfolios is independent of the price movements of the underlying as-
sets. Thus the risk-free hedged portfolio earns the risk-free interest rate. This
risk-neutral dynamic hedging concept replicates a put option , as demonstrated
by Leland and Rubinstein [33][34], and Brennan and Schwartz [9].

As risk neutrality is used for finding the equilibrium solution for the value of
options, the terminal payoff of a dynamic investment strategy can be designed
independent of optimizing the investor’s utility function. The preference-free
approach has opened the door for a wide variety of terminal payoffs of dynamic
investment strategies.

Section 2 explains the basics of portfolio insurance and classifies its dynamic
investment strategies. In section 3, the complete market, less complete market,
risk-neutral measure, and pricing kernel are introduced. Section 4 contains
the basic properties of investment strategies for portfolio insurance. Cox and
Leland’s [15] idea2 of the necessary and sufficient conditions for an efficient
dynamic investment strategy such as self-financing and path-independence3 are
explained. Dybvig’s[18][19] extension of Cox and Leland’s idea is discussed. In
section 5, the relationship between demand for portfolio insurance and investors’
behavior is analyzed. Section 6 concludes the discussion.

1see [12],[26],and [13].
2Editor’s note: Although presented in the privately circulated Proceedings of the Semi-

nar on the Analysis of Security Prices, Center for Research in Security Prices, University of
Chicago, this paper has remained unpublished for a variety of reasons.

3see also [4]. Cox and Leland developed Black’s analysis.
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2 Basic strategies for downside protection

A large number of investment strategies have been available to the long-term
investor seeking downside protection. The simplest one is a combination of
holding a well-diversified risky portfolio and a risk-free asset; it is known as the
monetary separation theorem in which

Minimize σ2 s.t. µ = ωr + (1− ω)rf ,

where σ2 and µ are, respectively, the variance and expected return of the port-
folio and ω is the allocation to the risky portfolio; r and rf denote the expected
return on the risky portfolio and risk-free asset, respectively. According to
the Capital Asset Pricing Model (CAPM) [44][41][35], the well-diversified risky
portfolio should be a market portfolio.

Since a static investment strategy only provides limited downside protection
and upside potential, Leland and Rubinstein [33] introduced the OBPI based
on the work of Black and Scholes [7] and Merton [38]. The investor has initial
wealth W0. He could use part of his wealth to purchase a reference portfolio
(market portfolio) and the remainder to buy its put option. As the price or
premium of the put option depends on market conditions, the allocation between
the reference portfolio and its put option could be determined by

W0 = ωS0 + ωVp0

= ωS0 + ωmax(K/ω − ST , 0),

where ω is the allocation to the reference portfolio; Vp0 is the premium of the
put option with the strike price of K/ω at time 0; W0 is the value of the wealth
and S0 is the price of the reference portfolio at time 0. K, in this case, is the
floor for the investor who wants to protect the minimum value of the wealth
when the terminal value of the reference portfolio ST is lower than the initial
value. Then, max(K/ω−ST , 0) indicates the terminal payoff of the put option.
The terminal wealth WT is then expressed as

WT =

{
ωST if ST ≥ K,
ωST +K − ωST = K if ST < K.

When the value of the portfolio is lower than the strike price, the investor
exercises the option so that the loss of the portfolio is covered by the proceeds
from the put option. Otherwise, the investor lets the option expire.

An investor can synthesize the put option by dynamically allocating a short
position in a reference portfolio and a long position in a risk-free asset. The
investor holds ∆(St, t) shares of the reference portfolio to replicate the put
option when the price of the reference portfolio at time t is St. ∆(St, t) is the
first derivative of the value of a put option at time t with respect to the value
of the reference portfolio. It is the measure of the change in the option value
with respect to instantaneous changes in the value of a reference portfolio.
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In [37], Merton formulated his problem as

Maximize

[
E

∫ T

0

U(C, t)dt

]
,

where U is the utility function, C is consumption, E is the expectation, and
T is the terminal date. Suppose markets grow as T → ∞ under a stationary
price movement. A long-term investor who has a constant relative risk aversion
(CRRA)4 utility function, a special type of the HARA5 utility functions, invests
in a risky asset with a constant proportion of his wealth.

The CPPI introduced by Perold [39], Black and Jones [5], and Black and
Perold [6], in which the allocation of a reference portfolio et over an investor’s
wealth Wt would be determined by the wealth minus the floor level K. This
difference is known as a cushion Ct and a constant multiplier m,

et = m
Ct
Wt

= m
Wt −K
Wt

. (1)

The payoff function has concavity. When the value of the cushion decreases, the
allocation to the risky assets will decrease to protect the value of the portfolio.
When the multiplier is one and the floor level is equal to the value of the risk-free
asset, it turns out to be the buy-and-hold strategy. As the multiplier increases,
the payoff delivered by the CPPI will close as in a stop-loss strategy. Since the
CPPI is equivalent to a perpetual American call with dividends, it maximizes
an investor’s utility under intertemporal consumption.

In [6], it is noted that transaction costs and borrowing limits complicate
analysis of the CPPI, however, in practice decisions must include these two
factors for the analysis to capture reality.

A large number of insurance strategies available to investors seeking down-
side protection are divided into several categories:

Time-dependent option replication strategies

A time-dependent option may be defined as an option whose terminal payoff
is determined by time and the terminal price of an underlying asset. Simple
options such as puts and calls belong to this category.

4

U(C) =

{
C1−γ−1

1−γ γ > 0, γ 6= 1

log(C) γ = 1,

where γ is non-negative constant.
5

U(C) =
1− γ
γ

λγ , α > 0 and λ =
αC

1− γ
+ β > 0
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Time-invariant portfolio insurance

Brennan and Schwartz [10] analyzed the class of portfolio insurance strategies
independent of time. Note that most institutional investors have a portfolio
without any terminal date. Such investors may need a smooth, concave payoff
pattern rather than one kinked at maturity, like puts and calls. The CPPI is a
special class of the time-invariant portfolio insurance.

General insurance policies

Brennan and Solanki [11] and Leland [31] suggested a general insurance policy
in which the insured portfolio’s payoff curve has a convex function of reference
portfolio terminal value. Investors do not need to hold a fully hedged portfolio
but have increasing protection as the price of the holding portfolio decreases.

Portfolio insurance strategies with specific features

• Rolling over portfolio insurance: in practice, a portfolio insurance strategy
may be reset annually for easier performance review.6

• Dollar cost averaging portfolio insurance: periodically, the amount of in-
vestment under a portfolio insurance strategy increases by the same dollar
value.7

• Controlling drawdown: some portfolio insurance has the additional pro-
tection from a drawdown,8 that is, the market decline from the maximum
value. In this strategy, the expected minimum value of a portfolio or strike
price is adjusted over time. The level of protection is determined by an
investor’s utility or algorithm of financial economics.

• Non-negativity constraints: American style put options are used to protect
the floor level at any time before maturity.9

• Exotic options: dynamic fund protection10 delivers an automatic adjusting
mechanism to lower the protection level if the fund value falls below a
certain threshold level. Several exotic options including lookback options
and Asian options are analyzed for an alternative investment strategy for

6Dybvig [18] concluded that rolling over portfolio insurance was inefficient.
7Brennan and Solanki [11] analyzed the optimality of investment made by dollar cost

averaging portfolio insurance and concluded that such a policy was not optimal.
8see Grossman and Zhou [22], and Roche [43]. Grossman and Zhou defined the drawdown

as

1−
Wt

Mt
,

where Wt is the wealth of a risky portfolio and Mt is the maximum value of the portfolio
between time zero and time t.

9Karoui, Jeanblanc and Lacoste [23] discusses the optimality of American style put option
portfolio insurance strategy.

10see [29]
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simple portfolio insurance.11 The option on a CPPI12 is a closed-form
solution for the price of a call on the CPPI without early exercise.

3 Complete and less complete markets

A complete market is a market in which cash flows generated by a trading strat-
egy can be replicated by using different trading strategies. Arrow and Debreu [2]
and McKenzie [40] contributed the proof of the existence of a complete market.

The Capital Asset Pricing Model(CAPM) is a historic break-through in fi-
nancial economics. It explains the presence of the risk premium. Another
milestone is the BS option pricing formula[7][38], the closed-form solution for
the value of an option on stock without dividends in a risk-neutral world. These
two models have common assumptions:

• The logarithmic returns of the underlying asset are normally distributed
with a constant drift and volatility.

• There is no arbitrage.

• Markets are frictionless.

3.1 Complete markets

To simplify the discussion, we assume that the value of a stock follows a binomial
random walk over one period[16]. The initial value of the stock is S0. Its value at
the end of the period is S0u or S0d depending on the state: u(up) or d(down),
respectively. The returns on the stock are denoted by u and d for states 1
and 2, respectively. The current value of the call on the stock is traded at
Vc0. At the end of the period, its value will be Vc1 or Vc2 when the value of
the stock becomes S0u or S0d, respectively. Thus Vc1 = max(0, S0u −K) and
Vc2 = max(0, S0d −K) where K is a strike price of the call. The return on a
risk-free asset rf is constant and the same for state 1 and state 2. The initial
value of the risk-free asset, B0, is B = B0rf at the end of period. Thus the
pricing process of the risk-free asset is deterministic. Suppose we can synthesize
the call by holding φ1 units of the stock and φ2 units of risk-free assets

Vc0 = φ1S0 + φ2B0. (2)

At the end of the period, the value of the replicating portfolio is:

Vc1 = φ1S0u+ φ2B0rf , or (3)

Vc2 = φ1S0d+ φ2B0rf , (4)

depending on the terminal state. Rearranging these formulae, we get

φ1S0 =
Vc1 − Vc2
u− d

and φ2B0 =
uVc1 − dVc2
(u− d)rf

. (5)

11see Gatzent and Schmeiser [21], Leland [32]
12It is introduced by Escobar, et al. [20].
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From (2) and (5), we find

Vc0 =

(
rf − d
u− d

Vc1 +
u− rf
u− d

Vc2

)
1

rf
. (6)

The above formula provides distinctive insights:

• The formula does not contain the expected value of the stock. Even though
investors are heterogeneous in terms of the expected value of the stock,
the hedging or replicating strategy is independent of such views.

• The option valuation formula does not have any variable related to the
risk preference of the investors. The value of the call is independent of the
investors’ attitude toward risk.

• Due to the condition u > rf > d, (rf − d)/(u − d) has a range from
zero to one; it has the properties of a probability. Let it denote q, thus
q ≡ (rf − d)/(u − d). Rearranging the formula, rf = qu + (1 − q)d. q is
known as a risk-neutral probability where the expected return on assets
is equal to the return on the risk-free asset. Cox and Ross [12] introduced
the concept of a risk-neutral world.

• If the value of Vc0 is greater than φ1S0 + φ2B0, the strategy is to sell
the call and replicate the long call to hedge the position of the short
call. It is an arbitrage opportunity. Immediately after arbitragers find
such opportunities, they continue their procedure until such supply is
eliminated. Thus, the arbitrage opportunity disappears in the efficient
market.

We can express (6) as a generalized form

Vc0 = (q1Vc1 + q2Vc2)/rf =
∑

ψjVcj = ψ
∑

qjVcj =
EQ(Vc)

rf
, (7)

where qj is a risk-neutral probability corresponding to each state j, ψj is a
state price for state j, and EQ represents an expected value operator under the
risk-neutral probability. qj is written as

qj =
ψj∑
ψj

=
ψj
ψ

= ψjrf . (8)

From (7), we find

1 =
∑

ψjri,j = ψ
∑

qjri,j = ψEQ(ri),

where ri,j is the return on asset i for state j; ψj is also known as a discount
probability. This shows that the price process is a martingale given the risk-
neutral probability.
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The probability corresponding to each state j is a state probability denoted
by pj

E(ri) =
∑

pjri,j .

In this case, the risk-neutral probability and the state probability are equivalent
measures. We introduce a pricing kernel πj : ψj = pjπj . πj transfers a state
probability to the risk-neutral probability. The above formula is written as

1 =
∑

ψjri,j =
∑

pjπjri,j = E(πri) = E(π)E(ri) + cov(π, ri). (9)

We apply this formula to the risk-free asset

1 =
∑

ψjrf,j =
∑

pjπjrf,j = E(πrf ) = E(π)E(rf ). (10)

From (8) and (9), we find

qj
pj

= rfπj .

Now we can express the value of the call by introducing pricing kernel

Vc0 = pπ1
Vc1
rf

+ (1− p)π2
Vc2
rf

=
E(πVc)

rf
=
EQ(Vc)

rf
. (11)

Given the unique martingale probability measure, the market is complete.

3.2 Less complete markets

In a one-period, pure exchange economy, a representative investor consumes one
product at the beginning and at the end of the period. The investor allocates
his initial wealth W0 between consumption C0 and the investment of a portfolio
at the beginning of the period. θi denotes his allocation to security i and Si(0)
represents the value of security i at that time. Then C0 = W0 −

∑
θiSi(0).

Security i pays dividend xi at the end of period. The investor consumes all his
final wealth C = W =

∑
θixi at the end of the period. xi is known as a terminal

payoff. Investor utility is represented by the quadratic form U(C) = 0.5C2.
The utility of the representative investor is given by

U(C0, C) = U(C0) + ρE[U(C)] = U [W0 −
∑

θiSi(0)] + ρE[U(
∑

θixi)],

where ρ is a impatience parameter. Differentiating the utility function with
respect to θi to maximize the utility, the first order condition is written as

∂U(C0, C)

∂θi
= −Si(0)

∂U(W0 −
∑
θiSi(0))

∂C0
+ ρE

[
∂U(C)

∂C
xi

]
= 0.

The value of security i at the beginning of period is proportional to the expected
value of marginal utility and the terminal payoff

Si(0) = ρ
E
[
U
′
(C)xi

]
U ′(C0)

, (12)
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where U
′
(C) = [∂U(C)]/∂W and U

′
(C0) = [∂U(C0)]/∂C0. Rearranging the

above formula, we find the expected return on security i

E(ri) =
U
′
(C0)

ρE[U ′(C)]
− cov[U

′
(C), ri]

E[U ′(C)]
, (13)

where ri = xi/Si(0). When a risk-free asset is traded in markets, the above
equation is transformed into the form of the return on the risk-free asset

rf =
U
′
(C0)

ρE[U ′(C)]
.

Substituting rf in (13), we get

E(ri)− rf = −cov[U
′
(C), ri]/E[U

′
(C)]. (14)

From the assumption of U(C) = 0.5C2, U
′
(C) = C =

∑
θiSi. The allocation

of the portfolio is optimal when the correlation of C and the aggregate wealth
is equal to one. This portfolio is known as a market portfolio, denoted by rM .
We can rewrite (14) to

E(rM )− rf = −var(rM )/rM . (15)

From (14) and (15), we have

E(ri)− rf = b[E(rM )− rf ],

where b = cov[rM , ri]/var(ri). This is the formula of the CAPM. It explains
that the risk premium per unit of risk of asset i adjusted by the correlation
between the asset and the market portfolio must be equal to the risk premium
per unit of risk of the market portfolio.

If we replace

ρ
U
′
(C)

U ′(C0)
= πi (16)

in (12), we can find

Si(0) = E(πixi) = EQ(xi).

Thus, the above formula implies that the pricing kernel is equal to the marginal
rate of substitution between future consumption and current consumption.

The major properties of the complete market are the presence of risk-neutral
investors and the equipartition of states . In less complete markets, the demand
and supply of a security are at equilibrium with a wide variety of risk averse
investors.
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4 Properties of a portfolio insurance strategy

The properties of portfolio insurance might be applicable to the most dynamic
investment strategies. If a dynamic investment strategy satisfies the conditions
of ”self-financing”, it might be path-independent and optimize the investor’s
utility function. The path-independency has a strong link with the delta, gamma
and theta of options.

4.1 Descriptive statistics

In the binomial option model discussed in sub-section 3.1, the expected return
on the stock and its variance are given by

E(rs) = p · u+ (1− p) · d,
var(rs) = p(1− p)(u− d)2,

where rs is the return on the stock. We get the expected return on portfolio
insurance and its variance

E(rPI) =
pVc1 + (1− p)Vc2

Vc0
(17)

= φ1E(rs) + φ2rf ,

var(rPI) = p(1− p)(Vc1 − Vc2)2

= p(1− p) [φ1(u− d)]
2
,

where rPI is the return on portfolio insurance. From (6), (11), and (17), we
obtain

E(rPI) =
pVc1 + (1− p)Vc2
qVc1 + (1− q)Vc2

rf

=
E(Vc)

EQ(Vc)
rf =

E(Vc)

E(πVc)
rf .

4.2 Self-financing

The value of wealth will fluctuate over time. Price-movement uncertainty is
described by two states: up movement and down movement. From (2),(3), and
(4), we get

Vc0rf = φ1S0[qu+ (1− q)d] + φ2B0[qrf + (1− q)rf ]

= φ1E
Q(S) + φ2B, (18)

φEQ(S) = φS0[qu+ (1− q)d], (19)

φ2B = φ2B0[qrf + (1− q)rf ]. (20)

If the above formulae hold and the values at the end of the period are exactly
same as the values for the following period, then the strategy is ”self-financing”.
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The risky portfolio, the risk-free asset, and total wealth each earn the risk-
free rate. Wealth fluctuates as the value of each portfolio moves up and down,
however, if these formulae are satisfied, these value processes are martingales
under the presence of the risk-neutral probability measure. Generalizing the
formula, we get

E(Vc) = φ1S0[pu+ (1− p)d] + φ2B0[prf + (1− p)rf ],

= φ1E(S) + φ2B,

φ1E(S) = φ1S0[pu+ (1− p)d],

φ2B = φ2B0[prf + (1− p)rf ].

If this set of formulae hold and the set of values at the end of the period are
exactly the same as the set of values for the following period, then the strategy
is self-financing, and the value processes of the reference portfolio, the risk-
free portfolio, and total wealth must satisfy an Itō process. In the case of the
presence of the risk-neutral martingale measure, they satisfy the form of the
Black-Scholes partial differential equation (PDE)(see 4.6.1). We can say that
self-financing is the law of value conservation(see [15]).

4.3 Path-independent

Look at Equations (18), (19), and (20) carefully. If the value of the position
of a reference portfolio first goes up and then down or first goes down then
up, in both cases the position of the reference portfolio reaches the same value.
We can observe the same mechanism for the value of wealth. Thus, if a dy-
namic investment strategy satisfies the condition of self-financing, then it is also
path-independent. The terminal values depend only on the final state and are
independent of the process to reach it .

4.4 Optimality of investor’s expected utilities

We now consider the n-step period that contains j steps of upward moves and
n−j steps of downward moves, denoted by (n, j). The probability of state (n, j)
is

p(n, j) =
n!

(n− j)!j!
pj(1− p)n−j .

The corresponding state price is

ψ(n, j) =
n!

(n− j)!j!
qj(1− q)n−j

rnf
.

If the strategy is a self-financing, then p(n, j) and ψ(n, j) are path-independent.
From these two equations, we get

π(n, j) =
ψ(n, j)

p(n, j)
=

[
q(1− p)
p(1− q)

]j [
1− q

(1− p)rf

]n
.
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The pricing kernel π(n, j) decreases as the number of upward steps increases
when the real state probability is higher than the risk-neutral probability, p > q,
because an investor with a long position will make money. The pricing kernel
increases as j increases when p < q. There is no investment where p = q. Thus,
the presence of ρ > 013 and from (12) and (16) implies that the strategy will
achieve a strictly increasing utility function when p > q(see [15] and [17]). The
strategy will optimize a risk-averse investor’s expected utility.

4.5 Efficiency

Dybvig [18][19] introduced an efficiency measure for a dynamic investment strat-
egy, the payoff distribution pricing model(PDPM).

Now, going back to subsection 3.1, the value of the call is

EQ(Vc) = qVc1 + (1− q)Vc2 .

Now we replace the payoff of Vc1 and Vc2 and compute the distribution price V ∗c

EQ(V ∗c ) = qVc2 + (1− q)Vc1 .

The efficiency loss of the payoff Vc is defined as

EQ(Vc)− EQ(V ∗c ).

If EQ(Vc)−EQ(V ∗c ) < 0, then Vc is efficient, otherwise, we confirm the presence
of another strategy that has the same distribution as Vc under the state proba-
bility measure but is cheaper. If EQ(Vc)−EQ(V ∗c ) > 0, we would be better off
having a put with strike price K.

Dybvig concluded that rolling over portfolio insurance was not efficient.
Bernard et al. [8] and Vanduffel et al.[46] analyzed several dynamic investment
strategies by the PDPM and found that the CPPI with discrete rebalancing was
not efficient.

4.6 Time-dependency

A dynamic investment strategy that allocates the fund between a reference
portfolio and a risk-free asset to achieve a given payoff x(ST , T ) at terminal
date T is classified as a time-dependent strategy. Its value V is a function of
time and the value of the reference portfolio:

V (St, t) = EQ[x(ST , t)].

The price of the reference portfolio follows a geometric Brownian motion with
stationary mean µ and variance σ2,

dSt
St

= µdt+ σdzt, (21)

13see section 3.2.
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where z is the increment to a standard Brownian motion. V satisfies the Black-
Scholes partial differential equation (PDE)(see 4.6.1) and the allocation to the
reference portfolio at time t.

Time invariant portfolio insurance is defined as a type of portfolio insurance
investment strategy whose exposure to the reference portfolio is a function of its
value. Brennan and Schwartz [10] analyzed the whole class of portfolio insurance
strategies ∆ that were independent of time

lim
T→∞

EQ[x
′
(ST )ST ]

EQ[x(ST )]
= ∆(St).

In a time invariant strategy, we can set the constant exposure above or below a
predetermined price level

∆(St) = b if St > S∗,

= m
Ct
Wt

if S∗∗ ≤ St ≤ S∗ in case of the CPPI

= 0 if St < S∗∗,

where S∗ is an upper bound, S∗∗ is a lower bound, and b is a constant and
represents the maximum exposure.

4.6.1 Option-based portfolio insurance (OBPI)

Leland and Rubinstein [34] introduced the technique to replicate the pay-off
of an option by using the Black-Scholes option pricing model. For any time
0 ≤ t ≤ T , the value of a put Vp is written as

Vp(St, t) = EQ[max(K − ST , 0)]

= −
[
StN(−h)−Ke−r(T−t)N(σ

√
T − t− h)

]
,

where N() is the standard cumulative normal distribution and h = [log(St/K)−
r(T − t)]/σ

√
T − t+ 1/2σ

√
T − t. The put can be replicated by holding:

∆p(St, t)St of the reference portfolio,

Vp(St, t)−∆p(St, t)St of the risk free asset maturing at T ,

where

∆p(St, t) =
∂Vp(St, t)

∂S
.

Thus, an insured portfolio will contain:

∆p(St, t)St + St of the reference portfolio, and

Vp(St, t)−∆p(St, t)St of the risk-free asset maturing at T .
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That the investor should hold the reference portfolio over his wealth at time t
is given by

ωt =
∆p(St, t)St + St
Vp(St, t) + St

.

The value of the OBPI is a function of time and the value of the under-
lying assets; V (St, t), t ≤ T . The exposure of the reference portfolio must be
rebalanced over time even though the value of the portfolio is stable; this is a
property of the time-dependent portfolio insurance strategy.

4.6.2 Constant proportion portfolio insurance(CPPI)

Initial surplus or the cushion C0 is the initial wealth W0 less floor K. The
exposure of the reference portfolio is given by (1). When et > Wt, the investor
borrows funds in amount of et −Wt. Otherwise, the amount Bt = Wt − et is
invested into risk-free assets: dBt = Btrfdt due to a constant risk-free rate.

The value of cushion will be written as

dCt = a(Ct, t)dt+ b(Ct, t)dz.

It must be

dCt = d(Wt −K)

= (1− et)WtdBt/Bt + etWtdSt/St − dK

= Ct [(1−m)dBt/Bt +mdSt/St] . (22)

The value of the reference portfolio follows a random walk. From (21) and (22),
and assuming frictionless and continuous trading, a(Ct, t) = Ct [m(µ− rf ) + rf ] t,
and b(Ct, t) = Ctmσ. Then applying Itō’s lemma with lnC14 :

Ct = C0 exp

{[
m(µ− rf ) + rf −

m2σ2

2

]
t+mσzt

}
.

Now applying Itō process with lnS15, we obtain

zt =
1

σ

[
ln

(
St
S0

)
−
(
µ− 1

2
σ2

)
t

]
.

14H = lnCt, then we find

dH =

(
∂H

∂C
aC +

∂H

∂t
+
σ2
t

2

∂2H

∂C2

)
dt+

∂H

∂C
bCdzt

= (a− b2/2)dt+ bdz.

15G = lnS, thus

dG =

(
∂G

∂S
µtS +

∂G

∂t
+
σ2
t

2

∂2G

∂S2

)
dt+

∂G

∂S
σtSdzt

= σdz + (µ− σ2/2)dt.
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Substituting this formula into the formula for Ct, we get

C(St) = C0

(
St
S0

)m
exp

{[
m(µ− rf ) + rf −

m2σ2

2

]
t+m

(
µ− 1

2
σ2

)
t

}
= C0αt

(
St
S0

)m
,

where

αt = exp

{[
r −m

(
r − 1

2
σ2

)
−m2σ

2

2

]
t

}
.

The value of the CPPI payoff is

W (St) = Kert + C0αt

(
St
S0

)m
.

It does not depend on t but St.
The price sensitivity of the value function of W (St) is given by

∆cppi(St) =
∂W (St)

∂S
= αmC0

(
St
S0

)m−1
.

It is independent of time t. As long as the price of a reference portfolio is stable,
the investor does not need to rebalance the positions.

The above analysis is valid when S is below the price level of maximum
exposure.

4.7 Predictability of volatility charge

An investment strategy for portfolio insurance might be trade-intensive. To
achieve its target payoff, a dynamic investment strategy needs to rebalance
trading positions. When the price of a reference portfolio increases, the exposure
will increase and when the price decreases, the exposure will decrease. Since
rebalancing is the continuous operation of buying high and selling low, market
fluctuations present a cost of the strategies. This is called a volatility charge.

Predictability of the volatility charge depends on the structure of the replica-
tion strategy. Even when there is extensive scenario analysis, the performance
of a replication strategy cannot be controllable if the volatility charge is not
predictable.

4.7.1 Option based portfolio insurance (OBPI)

Let’s say that Vc(S, t) is the price of a call. Then applying Itō’s lemma, the
function Vc of St and t is

dVc =

(
∂Vc
∂S

µS +
∂Vc
∂t

+
σ2

2
S2 ∂

2Vc
∂S2

)
dt+

∂Vc
∂S

σSdz. (23)
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The value of a call fluctuates up-and-down randomly because of the dz term.
Consider the trading strategy that mitigates the risk of holding an option in

any one moment. That is, only take into account the sensitivity of the option
to price movements. We know ∆ as the measure of the sensitivity with respect
to the price changes. Holding some amount of long option Vc and ∆c(S, t) =
−∂Vc/∂S shares of the underlying stock, the value of this portfolio W will be

W = Vc −∆c(S, t)S. (24)

This strategy is known as a delta-hedge. The value of the portfolio will move
from time to time depending on how the stock price moves. If the stock price
moves, we will instantaneously adjust the trading position to mitigate the risk.

From time t to t+ ∆t, instantaneous profit and loss can be written as

∆W

∆S
=

∆Vc
∆S

− ∂Vc
∂S

. (25)

During the adjustment process, we will accumulate the profit and loss, that is

∆W = ∆Vc −
∂Vc
∂S

∆S.

By substituting (21) for ∆S and (23) for ∆Vc, we can obtain

∆W =

(
∂Vc
∂t

+
1

2
σ2S2 ∂

2Vc
∂S2

)
∆t.

This formula does not contain a dz term, thus it is deterministic and absolutely
risk-free. This kind of portfolio is known as delta neutral. Since it is a riskless
portfolio, it must earn the risk-free rate, that is,

rfW =
∆W

∆t
=

(
∂Vc
∂t

+
1

2
σ2S2 ∂

2Vc
∂S2

)
,

otherwise there is an arbitrage opportunity. By substituting (24) for W , we
obtain the Black-Scholes partial differential equation (PDE)

rfVc =
∂Vc
∂t

+
1

2
σ2S2 ∂

2Vc
∂S2

+ rfS
∂Vc
∂S

.

The BS option model is the closed-form solution of this formula. As the result
the option premium is equal to the expected value of the volatility cost. Thus,
the volatility cost is predictable for replicating a call if this set of assumptions
is met.

4.7.2 Constant proportion portfolio insurance (CPPI)

Black and Perold [6] analyzed the volatility cost of the CPPI with discrete rebal-
ancing. A trader will rebalance the position depending on an up or down-move
in the reference portfolio. The size of the up-move and down-move are denoted
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as u and d, respectively. Both are positive and constant. The relationship
between the size of the up-move and the size of the down-move is given by
(1 + u) = 1/(1− d). A sequence of price movements is described as the number
of up-moves and down-moves, denoted by i and j, respectively,

S = S0(1 + u)i(1− d)j . (26)

After one up-move, the change to cushion C is

dC = nS0(1 + u)− nS0 = nS0u = mC0u,

where n is the number of units of the reference portfolio and mC0 = nS0. Thus
the cushion is given by

C1 = mC0u+ C0 = C0(1 +mu).

It is followed by one down-move, then

C2 = C1(1−md) = C0(1 +mu)(1−md).

The cushion C0 is not equal to C2 except when m = 1. If m is greater than 1,
(1 + mu)(1 −md) < 1. A pair consisting of an up-move and a down-move is
known as a reversal. The cost of one reversal is

α = (1 +mu)(1−md),

and the value of the cushion C after i up-moves and j down-moves is given by

C = C0(1 +mu)i(1−md)j . (27)

From (26) and (27) and eliminating i and j, the value of the cushion is given by

C = C0α
0.5n(S/S0)γ ,

where γ = 0.5 ln[(1 +mu)/(1−md)]/ ln(1 + u) and n = i+ j.
Even though the assumptions are met, the volatility cost is not predictable

for the CPPI with discrete rebalancing because of varying reversal charges per
price movement of the reference portfolio, except when m = 2. In [6] the CPPI
is considered to be weak-form path-independent. As u and d are close to zero,
the number of reversals will be infinite and the volatility charge turns out to be
deterministic. In such cases, the CPPI is path-independent.

This analysis is only useful when the price of a reference portfolio is less than
the maximum exposure.

4.8 Gamma controllability

As described in (25), the source of a replication cost occurs when the replication
positions of a dynamic investment strategy are linear but the replication payoff
is not linear. When the terminal payoff is not linear, the degree of its curvature
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is its convexity. This convexity is the second derivative of the value of a financial
model with respect to an input price, like gamma for the BS model. It is the
second derivative of the value of an option with respect to the underlying asset.
Steep curvature of the replication payoff implies high gamma.

Consider replicating an option with a concave payoff and a hedge position
that is the tangent line at a certain price. The payoff curve is always greater
than the tangent line on both sides of the tangency point. In other words, the
expected value of the payoff curve is greater than or equal to the function of the
expected value

E[f(x)] ≥ f [E(x)].

This is called the Jensen inequality. The gap between the payoff curve and the
tangent line is related to the value of the option. In the BS model, ignoring
interest rates and price movements, theta16 is exactly equal to gamma. The
value of the option depends on the convexity of the terminal payoff. More
precisely, as the gap between the expected value of the payoff curve and the
function of the expected value widens, the option price increases.

4.8.1 Time dependent options

The gamma of puts and calls is the second derivative of the value of the option
with respect to the underlying asset price

Gamma(St, t) =
∂∆(St, t)

∂S
.

It is a function of both the time to the maturity and price level. The gamma of
puts and calls is peaked as the terminal price is closer to being the at-the-money.
Changing strike price K and volatility σ can control gamma.

4.8.2 Time invariant options

The gamma of the value of the CPPI payoff is given by

Gamma(St, t) =
∂∆cppi(St, t)

∂S
= αm(m− 1)C0

(
St
S0

)m−2
.

It is a function of price and does not depend on the time to the maturity.
Gamma becomes large as the price increases except when m = 2. Gamma is
controlled by adjusting multiplier m and strike price K.

4.8.3 Constant Gamma

When the multiplier of the CPPI is two, then gamma becomes constant. In
case of m > 2, the volatility cost might be high, because gamma is an increasing
function of m, the moneyness, and the volatility of a reference portfolio. We can
find another example of a gamma constant strategy in square power options[45].

16Theta is the option time value.
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4.9 In state switching markets

In stationary market settings, the theory of a dynamic investment strategy has
been well developed and applied to many types of asset classes. Long-term
investors, however, face economies that have booms and recessions. The pat-
terns of their income and consumption are changed over time.17 Whenever
the states of the economy or market conditions change, the investment strat-
egy is reset. However, as the investment strategies that have a reset structure
such as rolling over portfolio insurance, dollar averaging, and a stop-loss are
inefficient[4][11][18], we should have an investment strategy without a reset.

The states in financial markets are grouped into a hierarchical structure
[24][25][1] that has a number of clusters classified by the size of the volatility,
the pattern of price movements, the degree of government intervention, and so
on. The tree structure might be useful for such classifications. If the states
in markets switch from one node to another, the dynamic investment strategy
should also switch from one strategy to another.

In [6], the high gamma in the CPPI may reduce the number of rebalancing
between the maximum exposure and zero exposure or vice versa. When the
replication cost in state switching markets is considered, we have to take into
account:

• As the gamma increases, the number of rebalancing decreases and the
replication error per rebalancing increases.

• If the tree has a lot of branches, then the amount of information contained
in each branch might decrease, that is, the profit obtained by switching
strategies would be limited.

• The identification of switching between states in the market is not cost
free.

• The cost of switching between investment strategies is not free.

5 Who should buy portfolio insurance?

The BS model does not tell us what type of investors should benefit from pur-
chasing put options or insuring against downside risk. Benninga and Blume [3]
state that the investor in the complete market did not have any demand for
portfolio insurance or options markets. In less complete markets, an investor
may need an insured portfolio.

Optimal portfolio insurance strategy was analyzed by Leland [31], and Bren-
nan and Solanki [11]. Assuming the hypothetical representative investor sup-
porting market prices, Leland analyzed the behavior of an individual investor
who optimized his own expected utility. He concluded that two types of in-
vestors need general insurance policies:

17please see the section of ’Practical implications’ in [4].
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• An investor who has average expectations but an above-average increase
in risk tolerance as wealth increases; this investor may include pension
and endowment funds that focus on safe investments.

• An investor who has above-average expectations of returns but average
risk tolerance; this investor can beat the markets and have positive alpha.
He needs to control risk within acceptable levels for his investors.

Investors following a passive investment strategy such as pension and endow-
ment funds might not be interested in identifying the deterministic trend of a
reference portfolio. They may believe that the value of a reference portfolio
follows a random walk. Upward and downward trends are considered to be
stochastic. Therefore, they will choose a portfolio insurance strategy to capture
reasonable gains from upside potential and to protect from downside risk.

Active managers who can deliver positive alpha through portfolio selection,
market timing, and arbitrage believe that the return on their active investment
is stable and predictable to a degree. Although the fluctuations of their returns
would not be acceptable for some of their investors, they will mitigate such
volatility by implementing portfolio insurance.

Leland and Rubinstein [34] mention that some investors became more risk
averse when the value of the reference portfolio reached certain levels. Such
investors will decrease their investment and withdraw funds from risky assets,
shifting to cash as their investment value increases.

If states of the economy are shifting from one cluster to another in the
long-term, the analysis of the demand for portfolio insurance becomes more
complicated and there are a wide variety of preference patterns for the large
number of different types of investors in financial markets. A preference-free
approach and switching between sub-strategies may be a potential solution for
realized problems.

6 Conclusions

Portfolio insurance is one of the successful applications of economic financial
theory. The optimization of an investor’s expected utility function, risk-neutral
measure, martingale, path-independency, and payoff pricing distribution models
are all essential gradients in the development of portfolio insurance. In the case
of a stationary economic environment, these theories are well developed and
their application might be successful, however, in an economy switching from one
state to another, we are just at the starting point for theoretical development. A
hierarchical structure of market states, the large deviation theory for identifying
the limit of the market state, and the Kullback-Leiber divergence for a distance
measure might be essential gradients in portfolio insurance in the future.

All these discussions might be applicable in any investment horizon including
a long-term, short-term, or even high frequency trading, but further research is
needed.
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