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This paper reviews statistical prediction models for financial time
series. The classical statistical prediction theory developed by Wiener
and Kolmogorov is applied to stationary stochastic processes. This
type of model, an ARIMA model, is practical and thus widely used
for financial time series analysis. However, most financial time series
are nonstationary. State space models, extensively used in the field
of control engineering, can create an approach for a wide range of
complex financial time series. Unfortunately, this approach is not
actively used in the financial industry. The paper explains the basic
properties of state space models, structure modeling, and a recur-
sive algorithm called the Kalman filter for novice researchers and
practitioners.

1 Introduction

Predictions in the financial industry are divided into several categories. One
way to forecast market movements is by seeing analogies in historical price
movements or patterns: observing similar market movements in, for example,
previously observed price patterns leads to the forecast that subsequent market
movements will be similar to those previously observed. The“forecast” is the
simple assumption that previous events may repeat in the future.

This predictive statement, based on the assumption of the repetition or con-
tinuation of patterns arbitrarily or without motivation, is strongly subjective.
However, as such predictive statements are based on stylized facts, these meth-
ods may be classified as a scientific, qualitative prediction.

Price predictions are often made by computing a moving average of a number
of historical prices. In practice, the number of past prices used is often not opti-
mized but follows a“rule of thumb” which may optimize moving averages. Holt

∗This work is based on the discussions with Professor Hiroshi Tsuda, Doshisha University,
Adjunct Professor Yoshiaki Kumagai, Waseda University, and a comment by Professor Yuji
Aruka, Chuo University. The basic idea of this work owes a debt to Andrew C. Harvey’s
extensive research works, especially his book “Forecasting, structural time series models and
the Kalman filter”
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(1957) and Winters (1960) introduced an updating method of an exponentially
weighted moving average for forcasting a local linear trend.

Then there is prediction based on a hypothesis or a model and related to
stationary stochastic processes. The prediction is a linear function of past values
with the minimization of the mean-square prediction error, as developed by
Wiener (1949) and Kolmogorov (1941) and explained by Whittle (1963). This
methodology developed into as the Box-Jenkins ARIMA model (1970) that is
the main analytical method currently in use for financial time series analysis in
the industry. It assumes that a series is reduced to stationarity by differencing.

The state space method is completely different from the Box-Jenkins ap-
proach. It has submodels designed to capture movements of observations con-
sistent with its properties. These submodels are components that are not ob-
servable and have a stochastic form. Each unobserved component might be
described as a trend, a season, a cycle or a disturbance term, and is called a
state of the system. It is difficult to identify all factors or components in order
to generate the observations. This statistical approach of decomposing a time
series model into several components is structure modeling. A simple starting
point of a state space model is that time series data are decomposed into a trend
and a disturbance term.

If a prediction function does not have random variables but has definite
predictive values, that prediction is known as deterministic. On the other hand,
when a prediction function is described as “a random walk,” as for stock price
movements, then it contains a stochastic process: the predictive function is not
deterministic but is a conditional probability distribution of future values based
on a knowledge of historical prices.

A stochastic process is useful when one is interested in an average or in typ-
ical behavior; for example, an analyst researches gold prices by calling major
buyers and sellers in the relevant industries, and then determining not player-
specific but average demand and supply information. In another example, ana-
lysts often observe complicated and unexplained variations in a financial market.
In such cases, the model has a residual term that represents the unexpected vari-
ation of predictive values. The residual is thus assumed to follow a stochastic
process. A stochastic process often makes a deterministic function evolve over
time, and the evolution of the stochastic term will determine the properties of
the time series model.

In a state space model, when a new observation comes in, the Kalman filter
computes an optimal estimator for the system. Proposed by Kalman (1960),
it is a recursive procedure used extensively for certain engineering applications.
It is not actively applied in the financial industry, however the approach has
been popularized gradually due to its usefulness and to recent developments in
computational power.

To predict is to make a statement of what or how an object will be in
the future. At times, prediction is a major objective for time series modeling;
however, it is rarely an end in itself.
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2 The state space approach

In a statistical model, time series are assumed to follow certain probability dis-
tributions. Such a model captures major characteristics of the data generation
process. For example, a random walk model is written as yt = yt−1 + εt. In
this model, the disturbance term εt follows the normal distribution with mean
zero and variance σ2

ε . The model has two parameters: the mean and variance.
These two values are assumed to be fixed and unknown in the classical analysis.
This model is written as:

yt = y1 +

t∑
j=1

εj ,

where dy = yt − yt−1 = εt is assumed to be stationary, dy ∼ N(0, σε), but yt
itself is nonstationary.

A random walk model has a stochastic trend. Applying the statistical theory,
the level of the stochastic trend is obtained as follows: at time t = 1, y1 follows
the normal distribution with mean a1 and variance Q1, that is, y1 ∼ N(a1, Q1).
When t = 2, y2 follows the normal distribution with a2 and Q2. This data gen-
eration process is expressed as {y1, y2}, and is pass-dependent. Its probability
is given by

p(y1, y2) = p(y1)p(y2 | y1),

where p(y2 | y1) represents the conditional probability of y1 followed by y2. As
time passes new observations are brought in, then a sequence of yt is denoted
as Yt = {y1, y2, . . . , yt}. The probability of Yt is written as

p(y1, . . . , yt) = p(Yt) = p(y1)

t∏
n=2

p(yn | Yn−1)

=

t∏
n=1

p(yn | Yn−1), (1)

where p(y1 | Y0) = p(y1). yt follows the normal distribution of mean at and
variance Qt. The values of at and Qt may vary according to a given sample Yt,
as that sample represents the level of the stochastic trend with a given Yt.

Now we rewrite a random walk model in state-space form to describe the
property of a state-space model that consists of a measurement equation and a
transition (state) equation;

yt = αt + εt (2)

αt+1 = αt + ηt., (3)

where yt is observed, and αt is unobserved. Equation (2) represents the rela-
tionship between observed data yt and unobserved data αt plus noise ε, and is
known as the measurement equation. It provides the link between the sample
and the unobserved variable.
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In equation (3), the dynamic of the unobserved variable is described as
the form of a first-order difference equation. αt is modeled stochastically as
a function of disturbance. It represents the stochastic trend or the level of
trend conditional on past observations. Unobserved variables are a “state of the
system”. The variances of εt and ηt are the parameters of the system and the
determinants of its properties. They are known as hyperparameters, generally
denoted by Ψ. A set of equations (2) and (3) is known as a local level model.

The transition equation is a random walk; therefore the measurement equa-
tion is also. Since a random walk is nonstationary, equations (2) and (3) are
nonstationary. Thus, if yt and αt follow the normal distribution, the parameters
of these distributions change over time. Rewriting the local level model:

yt = α1 +

t∑
n=1

ηn + εt.

The most prominent feature of the state-space model is its flexibility. If the
model has several regression coefficients, they can vary over time to be consistent
with the characteristics of observations for each component of the model. In the
classical linear regression, we assume that parameters are fixed but unknown.
They do not change over time. In the state-space model we can assume that
the parameters are fixed but unknown, as in the classical regression analysis,
but we can also assume that the parameters are changed over time. It can be a
time-invariant as well as a time-varying model.

A set of equations (2) and (3) can describe the data generation process of yt
with emphasis on the prediction’s accuracy. The recursive techniques known as
the Kalman filter may provide optimal predictors. Unobserved random variable
αt fluctuates around the mean with the range given by the variance. Since αt is
an unobserved variable, εt and ηt are unobserved as well. However, computing
the expected value of αt produces the following values :

ε̂t = yt − α̂t,
η̂t = α̂t+1 − α̂t,

where α̂t is the expected value of αt, and ε̂ and η̂ are known as disturbance
smoothing and state smoothing, respectively. η̂t is useful to construct confidence
intervals for αt. We can detect outliers and structural breaks by analyzing ε̂t
and η̂t.

2.1 Assumptions of the model

The set of equations (2) and (3) consists of the local level model. It is the
simplest state space model decomposed into a trend and a disturbance term. In
this model, it is assumed that all variables are normally distributed so that any
combinations of joint variables are normally distributed. It is also assumed that
εt and ηt have constant variances σ2

ε and σ2
η and that εt and ηt are mutually

independent and independent of αt.

εt ∼ N(0, σ2
ε ),
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ηt ∼ N(0, σ2
η).

Initially, we know that α1 follows the normal distribution with mean a1 and
variance P1.

α1 ∼ N(a1, P1).

At time t−1 and a given Yt−1, αt is assumed to follow the normal distribution
with mean at and variance Pt:

αt ∼ N(at, Pt).

The subscript represents the change of parameters. As the property of a random
walk process, at and Pt vary as time passes. We can express

at = E(αt | Yt−1),

Pt = Var(αt | Yt−1).

We define vt = yt − at and Vt = σ2
vt . vt is called an innovation because

it explains unpredictable value that cannot be obtained from the function of
past observations. Vt is a measure of the size of innovative impact at time t.
Replacing equation (2) for yt

1, we obtain the expected value and the variance
of vt:

E(vt | Yt−1) = E(yt − at | Yt−1)

= E(αt + εt − at | Yt−1)

= E(αt | Yt−1) + E(εt | Yt−1)− E(at | Yt−1)

= at − at = 0,

Var(vt | Yt−1) = Vt = Var(yt − at)
= Var(yt)−Var(at)− 2Cov(yt, at)

= Var(yt),

Var(vt | Yt−1) = Vt = Var(yt − at)
= Var(αt + εt − at)
= Var(αt | Yt−1) + σ2

ε

= Pt + σ2
ε ,

and

Cov(vt, yi) = E(vtyi)− E(vt)E(yi)

= E(vtyi)

= E[E(vt | Yt−1)yi] = 0,

1We use the following properties of expectation and variance:

E(X + Y ) = E(X) + E(Y ),

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).
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then
vt ∼ NID(0, Vt).

Therefore we assume that the innovation follows the normal distribution with
mean zero and variance Vt.

2.2 The Kalman filter

Initially, it is assumed that α1 follows the normal distribution with mean a1

and variance P1. When the random variable y1 is observed at time t = 1, it
is compared to the estimate a1. Based on y1, a1 and P1 are updated and the
updated values are used to compute new prediction values of a2 and P2.

At time t = 2, there is a new observation y2. Then, a2 and P2 are updated
and used to calculate a3 and P3. In this way, the local level of αt is updated
based on actual observations.

2.2.1 Updating the previous prediction

When we update at and Pt from newly observed yt, we assume that vt and
E(αt | Yt) have a linear relationship with the intercept at.

aupdatet = at + βavt = at + βa(yt − at),

where aupdatet = E(αt | Yt) and βa is a slope coefficient. This is a reasonable
assumption because of E(vt) = 0. The expected value of αt at a given Yt is
expressed as

aupdatet = E(αt | Yt−1, vt)

= E(αt | Yt−1) +
Cov(αt, vt)

σ2
vt

vt, (4)

where

Cov(αt, vt) = E(αtvt)− E(αt)E(vt)

= E(αtαt) + E(αtεt)

−E(αtat)− E(αt)E(αt)− E(αt)E(εt) + E(αt)E(at)

= E(αtαt)− E(αt)E(αt)

= Var(αt | Yt−1)

= Pt.

Now equation (4) is written as

aupdatet = at +Kx
t vt, (5)

where Kx
t = Pt/Vt and is called the Kalman gain. This is the regression coeffi-

cient of αt on vt. The update from E(αt | Yt−1) based on yt is aupdatet .
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We can develop the same form of the variance of αt.

Pupdatet = Pt + βAVt,

where Pupdatet = Var(αt | Yt) and βA is a slope coefficient.

Pupdatet = Var(αt | Yt−1, vt)

= Var(αt | Yt−1)− Cov(αt, vt)
2Var(vt)

−1

= Pt − P 2
t /Vt. (6)

Equation (5) and (6) are known as updating equations.

2.2.2 New prediction

The optimal predictor one step ahead of αt is the expected value of αt+1 and
its variance is the corresponding variance. To estimate at+1 and Pt+1 as

at+1 = E(αt+1 | Yt)
= E(αt + ηt | Yt)
= E(αt | Yt) + E(ηt | Yt),

Pt+1 = Var(αt+1 | Yt)
= Var(αt + ηt | Yt)
= Var(αt | Yt) + Var(ηt | Yt).

we obtain

at+1 = aupdatet = E(αt | Yt),
Pt+1 = Pupdatet + σ2

η = Var(αt | Yt) + σ2
η.

These two equations are called prediction equations.
Finally we get a set of formulae:

vt = yt − at,
Vt = Pt + σ2

ε ,

Kx
t = Pt/Vt,

at+1 = at +Ktvt,

Pt+1 = Pt(1−Kt) + σ2
η.

This set of equation makes up the Kalman filter. Please see Harvey(1989)
and Durbin and Koopman(2001) for more detailed discussion about the local
level model.

2.3 Initialization

The set of relations that constitutes the Kalman filter is known as a recursion.
In a recursive process, the initial values of some variables must be assumed
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or chosen. For example, in the local level model, determining the value of a1

and P1 for the unknown distribution of α1 specifies a diffuse prior distribution.
This process is purely subjective. There are two methods to determine the
parameters of a1 and P1.

We fix a1 at an arbitrary value and P1 →∞.

a2 = a1 +Kx
1 v1

= a1 +
P1

P1 + σ2
ε

(y1 − a1)

= y1,

P2 = P1(1−Kx
1 ) + σ2

η

=
P1

P1 + σ2
ε

σ2
ε + σ2

η

= σ2
ε + σ2

η.

This process is known as diffuse initialization and this filter is called the diffuse
Kalman filter.

Maximum likelihood may be defined as a statistical method for estimating
true parameters from the given data. We can estimate the parameters using
maximum likelihood from the first observation y1. The estimates of the param-
eters maximize the probability of obtaining the observations. In this case, y1

is the only sample. The Kalman filter is initialized by taking a1 = α1 = y1

and P1 = Var(α1) = Var(y1). Here, α1 and Var(α1) are maximum likelihood
estimates.

If α1 is constant, then α1 is fixed and y1 ∼ NID(α1, σ
2
ε ), and then α1 = y1

and Var(α1) = σ2
ε .

If the initial values are above the true values, the model may not diverge
over time. However this will make the filter less sensitive.

2.4 Estimation of hyperparameters

From equation (1), the probability of Yt = {y1, y2, . . . , yt−1, yt} is given by :

p(y1, . . . , yt) =

t∏
n=1

p(yn | Yn−1).

Then, the loglikelihood is

logL = logp(Yt) = −n
2

log(2π)− 1

2

t∑
n=1

(logVt +
v2

Vt
).

Maximizing the loglikelihood with respect to the parameters σ2
ε and σ2

η, we use
an EM algorithm to find their true values. The EM algorithm is a numerical
maximization method that consists of an expectation step (E) and a maximiza-
tion step (M). The algorithm evaluates and then maximizes the conditional
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expectation with respect to parameters σ2
ε and σ2

η, as developed by Shumway
and Stoffer (1982), Watson and Engle (1983) and Koopman (1993).

Putting q = σ2
η/σ

2
ε , the local level model may be reformulated as:

yt = αt + εt, εt ∼ NID(0, σ2
ε ),

αt+1 = αt + qεt, ηt ∼ NID(0, qσ2
ε ),

yt ∼ N(at, Vt),

αt ∼ N(at, Pt),

where q is known as a signal-to-noise ratio. Restating a set of formulae for the
Kalman filter:

vt = yt − at,
Vt = Pt + σ2

ε ,

Kx
t = Pt/Vt = P ∗t /V

∗
t ,

at+1 = at +Ktvt,

Pt+1 = Pt(1−Kt) + qσ2
ε ,

V ∗t = Vt/σ
2
ε = P ∗t + 1,

P ∗t+1 = P ∗t (1−Kx
t ) + q.

As yt follows N(at, Vt), we can maximize the loglikelihood function of

logL∗ = −1

2
log 2π − n− 1

2
− n− 1

2
log σ̂2

ε −
1

2

n∑
t=2

log V ∗t

= −1

2
log 2π − n− 1

2
− n− 1

2
log σ̂2

ε −
1

2

n∑
t=2

log[P ∗t−1(1−Kt+1) + q],

where

σ̂2
ε =

1

n− 1

n∑
t=2

v2
t

V ∗t
.

logL∗ is referred to as the concentrated diffuse loglikelihood, and is maximized
with respect to q. It is used in the Broyden-Fletcher-Goldfarb-Shannon (BFGS)
method to optimize logL∗, and is a type of Newtonian method of optimization.
The detailed discussion can be found in Fletcher (1987).

2.5 Steady state of the local level model

Does the Kalman filter converge to a steady state as n → ∞ ? It means that
the system parameters converge to certain values, for example

• Vt → Pt + σ2
ε ,

• Kt → Pt/Vt = Pt/(Pt + σ2
ε ),
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• Pt → Pt(1−Kt) + σ2
η = Pt

[
1− Pt/(Pt + σ2

ε )
]

+ σ2
η.

The variance of αt+1, Pt+1, is given by

Pt+1 = Pt[1− Pt/(Pt + σ2
ε )] + σ2

η.

If the system is in the steady state, it is said to be

P̄ = Pt+1 = Pt,

where P̄ is the steady state of the variance of αt as t → ∞. Then the formula
above is restated as

P̄ = P̄ [1− P̄ /(P̄ + σ2
ε )] + σ2

η,

thus

(P ∗)2 − (P ∗)q − q = 0,

where P ∗ = P̄ /σ2
ε , q is the signal-to-noise ratio. Its solution is

P ∗ =
(
q ±

√
q2 + 4q

)
/2 > 0.

Thus when q > 0, then the solution is positive.
Next we consider the extreme case of σ2

ε = 0. That is, we assume that the
values given by the local level model and the values of the observations are
identical and without any errors; then

• yt+1 = αt+1,

• Vt = Pt,

• Kx
t = Pt/Vt = 1,

• at+1 = at +Kx
t vt = at + yt − at = yt, and

• Pt+1 = σ2
η.

The expected value yt+1 is today’s value yt. The variance of αt stays constant
as the value of σ2

η.
Let us consider another extreme case in which σ2

η = 0: αt becomes a deter-
ministic process, and then

• Vt = Pt + σ2
ε → 0,

• Kx
t = Pt/Vt → 0,

• at+1 = at +Kx
t vt → a1, and

• Pt+1 = Pt(1−Kt) + σ2
η → 0.

However, these two extreme examples are very rare events. In general,

when σ2
ε > σ2

η, then Kx
t → 0,

when σ2
ε ≤ σ2

η, then Kx
t → 1.
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3 The general linear Gaussian state space model

Analyzing the local level model demonstrates basic properties of state space
form, leading to the basic formation of the state space model. The observa-
tions contain N elements and are decomposed into m components, applied to a
multivariate time series. When N is equal to 1, it is a univariate model.

yt = Ztαt + dt + εt,

αt = Ttαt−1 + ct + Rt + ηt, (7)

where Zt,dt,Tt, ct, and Rt are system matrices. In the measurement equation,
Zt is an N × m matrix, dt is an N × 1 vector, and εt is an N × 1 vector of
serially uncorrelated disturbances with mean = zero and covariance matrix Ht.
In the transition equation, Tt is an m×m matrix, ct is an m× 1 vector, Rt is
an m× r matrix, and ηt is an r× 1 vector of serially uncorrelated disturbances
with mean = zero and covariance matrix Qt. In this system, the observations
yt are modeled as a linear combination of disturbances over time and the initial
state vector, α0. dt is an explanatory variable that enables the model to include
observable variables to explain some of the movement in the observations, yt.
It might increase flexibility because the explanatory variable may take time-
varying coefficients. The disturbances εt and ηt and the initial state vector α0

are assumed to be normally distributed. These disturbances are uncorrelated
with each other and uncorrelated with the initial state over time. Note that the
system matrices take subscript t, meaning that the model may take more than
one state. Thus

cov(εt, ηj) = 0 for all j and t, t 6= j,

where j denotes time. The parameters appearing in the system matrices Zt ,Tt

, Rt, Ht and Qt determine the properties of the model. They are called the
hyperparameters and are distinguished from the parameters appearing in the
system matrices dt and ct. The later parameters determine only the character-
istics of their own states. This model is called the general linear Gaussian state
space model.

In the general state space form, the Kalman filter computes the optimal
estimator of the state vector as time passes, as previously described.

The hyperparameters appearing in the system matrices and initial values of
a0 and P0 are fixed and unknown. We have to estimate these values before the
system is applied.

The optimal estimators of αt at t− 1 are denoted as

at = E(αt | Yt−1),

Pt = Var(αt | Yt−1).

Pt can be regarded as its unconditional error covariance matrix.
When new observations yt are brought in, the predictive values of at and
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Pt are updated by

aupdate
t = E(αt | Yt) = at + PtZ

′
tF
−1
t (yt − Ztat − dt),

Pupdate
t = Var(αt | Yt) = Pt −PtZ

′
tF
−1
t Pt,

where Vt = ZtPtZ
′
t + Ht. These two equations are called the updating equa-

tions.
Based on new estimators of aupdate

t and Pupdate
t , we make an optimal pre-

diction for the next step:

at+1 = E(αt+1 | Yt) = Tta
update
t + ct+1,

Pt+1 = Var(αt+1 | Yt) = TtP
update
t T′t + RtQtR

′
t. (8)

These prediction equations are known as the Kalman filter. After the completion
of the recursive process of the Kalman filter, at is the optimal estimator of αt,
with the minimum mean square error(MMSE).

3.1 The time invariant framework

The local level model is a time-invariant model: the system matrices are fixed
over time. In many applications, the system matrices are assumed to be non-
stochastic. Even though time passes, the hyperparameters and the properties
of the system remain constant. Under such an assumption, the system matrices
are denoted as Z,d,T, c, and R.

In a stationary process, the parameters stay constant so that the process’s
properties do not change over time. Many nonstationary time series data are
modeled as time-invariant forms and are made stationary by differencing, de-
composing into several components, or including explanatory variables in the
model. The models in state space form classified as time-invariant are much
broader than the stationary models in which stationarity is obtained simply by
differencing.

The definition of αt may determine the stationarity of the model. The state
system should contain all the relevant information, however the number of state
variables or elements must be minimized, making it depend on the interpretation
of observations, depth of experience and computational power at that time.

If the state system converges with the equilibrium condition, the system will
be stable. Such a condition will be achieved depending on the initial value of
α0, and the properties of εt and ηt. However regardless of what value α0, εt and
ηt take, the necessary and sufficient conditions for stability is

T < 1 for all components.

Please see Harvey (1989,3.3).

3.2 Another form of trends

Defining a trend is a very important issue in applied work. Other kinds of trends
can show how flexible the state space form is. These models are compared with
the ARIMA and EWMA models in later sections.
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3.2.1 The global trend

The global trend may be simply defined as a straight line fitting a function of
time to all points in time series data. It is obtained by the linear regression
method, and is a deterministic function of time. It is expressed as

yt = g · t+ εt,

where g is a regression coefficient and εt is a disturbance term. This is the most
basic form of linear trend; the forecast extrapolates it into the future. A random
walk with the global trend will be expressed in state space form as

yt = αt + g · t+ εt, εt ∼ NID(0, σ2
ε ),

αt+1 = αt + ηt, ηt ∼ NID(0, σ2
η),

thus we get

yt = α1 +

t−1∑
n=1

ηn + g · t+ εt.

The model contains both the local and global trends.

3.2.2 The local linear trend

A random walk model plus a time trend in state space form is expressed as

yt = αt + εt, εt ∼ NID(0, σ2
ε ), (9)

αt+1 = αt + lt + ηt, ηt ∼ NID(0, σ2
η), (10)

lt+1 = lt + λt, λt ∼ NID(0, σ2
λ). (11)

This is a local linear trend model. From these three equations, it is rewritten as

yt = α0 +

t−1∑
n=0

ηn +

t−1∑
n=0

ln + εt

= α0 +

t−1∑
n=0

ηn + l0 · t+

t−1∑
n=0

n−1∑
m=0

λm + εt

where the coefficients or slope of the time trend is stochastic and varying over
time.

If σ2
λ = 0, then the time trend becomes deterministic, with a fixed slope.

yt = αt + εt, εt ∼ NID(0, σ2
ε ),

αt+1 = αt + l + ηt, ηt ∼ NID(0, σ2
η).

It is expressed as

yt = α1 +

t−1∑
n=1

ηn + l · t+ εt,

in which case it is seen as a random walk with drift, and the local trend might
be identical to the global trend.

13



3.2.3 The higher-order polynomial trends

A local nonlinear trend is given by higher order polynomials. It is described as

yt = l0 + l1t+ l2
t2

2
+, . . . ,+ln

tn

n!
+ εt, t = 1, . . . , T.

This is a deterministic model. This kind of model can be formulated as a linear
time series model in state space form. One of the simplest examples of this local
trend model is constructed in state space form by setting:

yt = αt + εt, εt ∼ NID(0, σ2
ε ),

αt+1 = αt + l0,t + ηt, ηt ∼ NID(0, σ2
η),

l0,t+1 = l0,t + l1,t + ψ0,t, ψ0,t ∼ NID(0, σ2
ψ0

),

l1,t+1 = l1,t + ψ1,t, ψ1,t ∼ NID(0, σ2
ψ1

).

In this case, the coefficients l0 and l1 are stochastic. l0 and l1 are interpreted as
the local trend and a local acceleration, respectively. This is a local quadratic
trend model. yt is expressed as

yt = α1 +

t−1∑
n=1

ηn +

t−1∑
n=0

l0,n +

t−1∑
n=1

l1,n · t+ εt

= α1 +

t−1∑
n=1

ηn + l0,1 · t+ +

t−1∑
n=0

n−1∑
m=0

ψ0,m

+l1,1 · t2 +

(
t−1∑
n=1

n−1∑
m=1

ψ1,m

)
· t+ εt.

Consider the case of σ2
ψ0

= 0 and σ2
ψ1

= 0, implying l0 and l1 become constant
and known as a random walk with drift plus a deterministic trend. If l1 = 0, the
model is known as a random walk with drift (which we have already seen). If
l0 = 0, the model is known as a random walk plus a deterministic trend. Please
refer to the discussion about types of higher-order polynomial trends in Jacobs
and Jones (1980).

So what is the trend? Harvey (1989, 6.1.1) clearly defines that in structural
time series models, the trend indicates the long-term movements in the series,
without seasonal and daily effects, that is the best estimator of the trend and
tends towards the optimal predictor of the series as a whole. Symbolically it is
expressed as

lim
i→∞

(ỹT+l|T −mT+l|T ) = 0,

where ỹT+l|T is the optimized prediction of the series as a whole, and mT+l|T
is the minimum mean square linear estimator(MMSLE) of the trend at time T .
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3.3 Relationship to ARIMA and EWMA models

The structural time series model may have several disturbance terms. Since the
model is linear, the state space model is combined to be a single equation with
a single disturbance. This is known as a reduced form or a canonical form.

3.3.1 ARIMA models

In a financial time series, the lagged return or disturbance might be useful for
describing the property of given data. It is modeled as an autoregressive-moving
average process with order (p, q) that is given by

yt = φ1yt−1 + · · ·+ φp + ξ1 + θ1ξt−1 + · · ·+ θqξt−1.

It is denoted by ARMA(p, q).
A series might be stationary by differencing d times; it is said to be the

integrated order of d. When a given sample is modeled to follow a station-
ary and an ARMA(p, q), after taking a difference d times, it is known as an
autoregressive-integrated-moving average process with order (p, d, q) denoted as
ARIMA(p, d, q). Please see Box and Jenkins (1970). A structural time series
model is reduced to be an ARIMA(p, d, q) process, possibly with some restric-
tions on the parameter space. If there is no restriction in ARIMA models fitted
to the given data, it is known as an unrestricted reduced form. Please refer to
Nerlove (1979,pp.70-78) for a general algorithm .

3.3.2 Invertibility

An ARMA process is said to be invertible if

ξt =

∞∑
n=0

Ψnyt−n.

This formula is interpreted that ξt can be decomposed into the previous value of
yt and an innovation. An innovation cannot be explained by past observations
and thus is independent from the past.

Here is a simple and clear example. An MA(1) is defined as

y1 = ξ1 − θξ0.

We repeatedly substitute for lagged values of ξt, such as

y1 = ξ1 − θξ0
y2 = ξ2 − θξ1 = ξ2 − θ(y1 − θξ0)

. . .

yn = ξn − θξn−1 =

∞∑
m=1

(−θ)myn−m + θmξ0 + ξn.
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yn is expressed as an AR(∞) if |θ| ≤ 1. As m increases, θmξ0 becomes smaller.
In other words, an MA(1) is inverted to AR(∞). We can see the invertibility of
MA(1) under the restriction of |θ| ≤ 1. If we use the property of autocorrelation,
we can easily identify the invertibility of the model. As

E[y2
t ] = E[(ξt − θξt−1)2] = σ2(1 + θ2),

E[ytyt−1] = E[(ξt − θξt−1)(ξt−1 − θξt−2)] = −θσ2, (12)

we can get the autocorrelation function:

ρ(τ) =

{
−θ/(1 + θ2), τ = 1,

0, τ ≥ 2.
(13)

If we replace the parameter θ by 1/θ, then

ρ(1) =
−1/θ

1 + (1/θ)2
=
−θ

1 + θ2
.

This implies that when the condition is met, the MA(1) is invertible. If a
process is not invertible, one can generate a time series that has an identical
autocorrelation structure. But if a process is invertible, such a series has only
one autocorrelation structure.

Please note that the condition of invertibility is the same as that of station-
arity. MA(2) process is defined as

yt = ξt − θ1ξt−1 − θ2ξt−2,

where θ1 and θ2 are parameters. As

E[y2
t ] = E[(ξt − θ1ξt−1 − θ2ξt−2)2] = σ2(1 + θ2

1 + θ2
2),

E[ytyt−1] = σ2(−θ1 + θ1θ2),

E[ytyt−2] = −θ2σ
2,

we can get the autocorrelation function:

ρ(τ) =


(−θ1 + θ1θ2)/(1 + θ2

1 + θ2
2), τ = 1,

−θ2/(1 + θ2
1 + θ2

2), τ = 2,

0, τ ≥ 3.

(14)

The invertibility condition can be shown to be

θ1 + θ2 < 1,

−θ1 + θ2 < 1, (15)

−1 < θ2 < 1.
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3.3.3 The exponential weighted moving average

The simplest way to estimate the level of time series is to get the sample mean
of the observations. If more weight is given to the most recent sample, then
such weight exponentially decays.

mt = (1− λ)mt−1 + λyt,

where m represents the current level of the observations. This recursion is an
exponentially weighted moving average (EWMA). The optimum λ is obtained
by minimizing the sum of squares of the one-step-ahead forecast errors.

Hold (1957) and Winters (1960) extended the model by adding a slope b. It
becomes

mt = λ0yt + (1− λ0)(mt−1 + bt−1),

bt = λ1(mt −mt−1) + (1− λ1)bt−1.

These equations are known as Holt’s recursions. Minimizing the sum of squares
of the one-step-forward forecast errors optimizes both λ0 and λ1.

3.3.4 The local level model

From equations (2) and (3), we can get the single equation form of the model

yt − yt−1 = ∆yt = ηt + εt − εt−1 = ηt + ∆εt, (16)

where ∆ is the first-difference operator. When σ2
ε = 0, it is rewritten as

yt − yt−1 = ∆yt = ηt.

The model is said to be the ARIMA(0,1,0) without any restriction.
From equation (16), it is easy to see that

E(∆yt) = E(ηt) + E(εt)− E(εt−1) = 0,

E[(∆yt)
2] = E[(ηt + ∆εt)

2] = σ2
η + 2σ2

ε ,

E[(∆yt)(∆yt−1)] = E[(ηt + ∆εt)(ηt−1 + ∆εt−1)] = −σ2
ε . (17)

Thus we can get the autocorrelation function of the model:

ρ(τ) =

{
−σ2

ε /(σ
2
η + 2σ2

ε ), τ = 1,

0, τ ≥ 2.
(18)

The range of the autocorrelation is given by −0.5 ≤ ρ(1) ≤ 0. It exhibits the
cut-off at lag one which is the characteristics of a first-order moving average,
MA(1), process.

Taken together equation (18) and (13) yield

θ2 + (q + 2)θ + 1 = 0.
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The solution is given by

θ =
(√

q2 + 4q − 2− q
)
/2.

It confines the range of −1 ≤ θ ≤ 0 because of 0 ≤ q ≤ ∞. Under the range
of θ, the reduced form is invertible. Equation (17) and (12) gives θ = −σ2

ε /σ
2.

Then the local level model is reduced to the ARIMA(0,1,1) with the restriction
of −1 ≤ θ ≤ 0. The parameter space is half of the one given by the unrestricted
reduced form. In the case of σ2

η = 0,

θ2 + 2θ + 1 = (θ + 1)2 = 0,

thus θ = −1. The reduced form model is strictly noninvertible.
In relation to the EWMA, optimal forecast of the model is given by an

EWMA form. Please see Muth (1960).

3.3.5 The local linear trend model

Taken together equations (9), (10) and (11) yield the single equation form of
the model

∆2yt = ∆ηt + λt−1 + ∆2εt. (19)

When σ2
λ = 0, it is rewritten as

∆yt = ηt + λ+ ∆εt.

The model is said to be ARIMA(0,1,1) with the same restriction for the local
level model.

From equation (19), it can be seen that

E[(∆2yt)
2] = E[(∆ηt + λt−1 + ∆2εt)

2] = 2σ2
η + σ2

λ + 6σ2
ε ,

E[(∆2yt)(∆
2yt−1)] = −σ2

η − 4σ2
ε ,

E[(∆2yt)(∆
2yt−2)] = σ2

ε .

Thus we can get the autocorrelation function of the local linear trend model:

ρ(τ) =


(−σ2

η − 4σ2
ε )/(2σ2

η + σ2
λ + 6σ2

ε ), τ = 1,

(σ2
ε )/(2σ2

η + σ2
λ + 6σ2

ε ), τ = 2,

0, τ ≥ 3.

(20)

It exhibits the cut-off at lag two that is characteristic of a second-order moving
average, MA(2), process. These variances confine the range of the autocorrela-
tions:

−0.667 ≤ ρ(1) ≤ 0,

0 ≤ ρ(2) ≤ 0.167.
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When σ2
η = 0 and σ2

λ = 0, ρ(1) = −0.667 and ρ(2) = 0.167, and σ2
η = 0 and

σ2
ε = 0, then ρ(1) = 0. When σ2

ε = 0, then ρ(2) = 0.
The local linear trend model is reduced to the ARIMA(0,2,2). However,

from equation (15) and the given ranges of autocorrelations, the restrictions
applied to this model are much narrower than those applied to the local level
model. Goddphin and Stone (1980) provide the detail analysis.

Optimal forecast in the model is exactly same as that of Holt’s recursions.

3.3.6 The higher order polynomial trends

The unobserved components form of the model is given by

∆3yt = ∆2ηt + ∆(λt−1 + 0.5ψt−2) + ∆2εt.

The model is reduced to the ARIMA(0,3,3). Please see the discussion in Jacobs
and Jones (1980).

3.3.7 Reduced form parameters

We have looked at several state space, EWMA and ARIMA models. The state
space model can be reduced to the ARIMA form with certain restrictions. The
EWMA models also have similar properties to the corresponding state space
models. We can find some discrepancies between the state space form and the
corresponding ARIMA model in terms of the admissible region of reduced form
parameters. State space form can be reduced to the ARIMA class models but
have certain restrictions. These restrictions are not a disadvantage of state
space form. Rather, they can be a powerful tool to generate and control data
consistent with a given sample.

4 The time-varying models

Analysis of the local level and the local linear trend models that have several
disturbance terms shows some flexibility in the time invariant state space form.
We reduce them to the ARIMA models with a single disturbance term and
stationarity. There are some limitations in the ARIMA framework and some
potential in the state space form for handling complex variation in financial
time series. There is more flexible way to develop the state space model for a
wide variety of series complexity: the system matrices can change their values
in some predetermined manner when certain conditions are met. Such models
are said to be time-varying.

In structural time series models, each component evolves stochastically over
time under the assumption of fixed hyperparameters. Each component changes
the values of its parameters consistently with given observations. These models
can be reduced to stationarity by some transformations. However maintaining
stationarity is not always an essential part of financial time series modeling. If
we realize that the hyperparameters are not optimal for the given data, we have
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to calibrate and change them. The fixed hyperparameters are time-varying.
The model with time variation may lose its linearity and so its stationarity and
be classified as a nonlinear model.

We analyze three classes of time-varying models: the conditionally Gaus-
sian models, the regime switching models, and the explanatory variables with
time-varying coefficients. These models are nonlinear, however their hyperpa-
rameters may shift in order to keep the process stationary. As a result of such
characteristics, they are distinguished from the functionally nonlinear models.

4.1 Conditionally Gaussian models

The type of distribution of disturbances may characterize the property of the
model. Many of disturbances are assumed to follow a Gaussian distribution.
Conditionally Gaussian models have Gaussian disturbances, and the system
matrices evolve as a function of given observations at time t. The values of
hyperparameters change as the system matrices evolve with the passing of time.
Such models are specified as the following set of equations:

yt = Zt(Yt−1)αt + dt(Yt−1) + εt,

αt = Tt(Yt−1)αt−1 + ct(Yt−1) + Rt(Yt−1)ηt,

where

εt | Yt−1 ∼ N[0,Ht(Yt−1)],

ηt | Yt−1 ∼ N[0,Qt(Yt−1)] ,and

α0 ∼ N(a0,P0).

The system matrices may change as a function of given observations. However
the hyperparameters are regarded as being fixed at that very moment that
the matrices evolve. Therefore, we can use the Kalman filter to derive the
general linear Gaussian state space models. Lipster and Shirayav (1978) have
undertaken the extensive research in this field .

4.1.1 An AR(1) model with parameter following AR(1) process

Weiss (1985) discussed the stability of an AR(1) model with a time-varying
coefficient.

yt = (ψ0ψt)yt−1 + ε, ε ∼ N(0, 1),

ψt = Mψt−1 + ηt, η ∼ N(0, Q),

where E(εtηs) = 0 for all t and s and Var(εt) = 1 and Var(ηt) = Q. The
interaction between the two equations is dynamic and very complicated. Setting
up M = 0 and Q = 0 reduces the above state space form to the usual AR(1)
process. The condition of stability is |ψ0| < 1. Weiss makes the interesting
observation that under certain conditions the process is stable even though the
value of ψ may take the explosive region |ψ| ≥ 1.
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4.2 Structural Break

It is assumed that a financial time series is reasonably stable, and that when its
characteristics change, the process goes slowly. However sometimes the char-
acteristics shift suddenly from one condition to another. These phenomena are
known as structural breaks.

Stationarity is an essential element of structural time series modeling. Each
component evolves stochastically over time and changes the values of its param-
eters consistent with given observations. The series is modeled as nonstationary,
but can be reduced to stationarity, therefore these hyperparameters are fixed
in each regime. If the property of stationarity does not fit the stylized fact, we
have to drop it. This is the basic notion of modeling structural break.

4.2.1 Detecting structural break

Structural changes have been researched for more than fifty years since Chow
(1960) developed a test to detect structural shift. Many advances have been
made to cover practical applications in the context of

• known/unknown change points: Zivot and Andrews (1992), Hansen (1992)

• single/multiple structural changes: Bai (1999), Bai and Perron (1998),
Hansen (2000)

• endogenous/endogenous model: Perron (1989), Zivot and Andrews (1992)

• threshold/stochastic process: Perron (1989)

• permanent/temporal breaks: Rappoport and Reichlin (1989), Perron (1989)

The most work has been devoted to detecting structural breaks.

4.2.2 Switching regime

The observations in a time series may not be generated by the same mechanisms
over time, that is, the mechanisms may change at different points in time. In
that case, the series is subject to switching regimes.

Construct the two-regime switching model that is modeled by two local
level models. Two regimes Ψ1 and Ψ2 represent the normal financial markets
and the markets under systemic risk, respectively. That is Ψ1 = [σ2

ε1 , σ
2
η1 ]

and Ψ2 = [σ2
ε2 , σ

2
η2 ]. These hyperparameters should be estimated separately

based on the past observations of normal markets and the markets exposing
the systemic risk, if we know when the change in regime has taken place. If a
regime change is generated endogenously, the model becomes nonlinear. If the
following conditions are met, the model might be conditionally Gaussian:

• a finite number of regimes,

• each regime has a different set of hyperparameters,
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• switching regimes are determined by a function of the past observations
or threshold model.

Optimization of each hyperparameter is undertaken separately, therefore
each local level model is obviously linear.

4.3 Explanatory variable

Equation (7) includes the explanatory variable dt. However if the regression
coefficient of the explanatory variable is constant, it becomes just normal re-
gression problem. dt is replaced by δtxt, where δt evolves stochastically, and xt
is an explanatory variable. The estimation of structural time series models with
explanatory variables follows the process applied to the general linear Gaussian
models.

4.3.1 The time-varying CAPM

The time-varying CAPM is formed as a conditionally Gaussian model. It is
given by

E(Rt)−Rf = αt + βt[E(RM,t)−Rf ] + εt,

αt+1 = αt + ηt,

βt+1 = βt + λt,

where E(Rt) is the expected return of an asset, Rf is the risk-free rate of interest,
E(RM,t) is the expected return on the market portfolio, βt is the sensitivity of
the expected excess asset return to the expected excess market returns. εt, ηt
and λt are disturbance terms, uncorrelated with each other and uncorrelated
with the initial state over time. α and β are assumed to evolve stochastically.
In the original CAPM, α = 0 and β is constant. Please see Tsay (2005.p 510).

4.4 Stochastic volatility model

The most important application of state space modeling to financial time series
is a stochastic volatility model. This approach was proposed by Hull and White
(1987), Chesney and Scott (1989), and Melion and Turnbull (1990). Their work
discussed time-varying volatility in an option pricing model. The Black-Scholes
(BS) model assumes that volatility is constant over time to maturity. However,
this work derived more dynamic BS type option pricing formulas. A simple
example is

yt = εtexp(ht/2), εt ∼ NID(0, 1),

ht = α0 + α1ht−1 + ηt, ηt ∼ NID(0, σ2
h).

One of the disadvantages of this model is that it requires computer-intensive
methods such as MCMC and importance sampling. However, recent develop-
ment of computational power enables these methods to be less time consuming.
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Lam and Li (1998) propose a regime-switching stochastic volatility model in
which the model has three states. They apply the model to S&P weekly returns.

Harvey, Ruiz and Shephard (1991) examine four daily exchange rates and
suggest that all the rates followed a random walk.

5 Prediction

Prediction can be defined as making a statement on what or how an object
will be in the future. Sometime prediction is a major objective for a time series
modeling. In statistics, the prediction of yt for l steps ahead is defined to get the
optimal predictor of yt+l, that is the expected value of yt+l conditional on given
information at time t. We denote the optimal value of yt+l on given information
Yt at time t as ỹt+l|t. The estimation error is decomposed into

yt+l − ỹt+l|t = [yt+1 − E(yt+l | Yt)] + [E(yt+l | Yt)− ỹt+l|t].

Squaring and taking conditional expectations for the whole equation yields

MSE(ỹt+l|t) = E(yt+l − ỹt+l|t)2

= E[yt+1 − E(yt+l | Yt)]2 + E[ỹt+l|t − E(yt+l | Yt)]2 (21)

= var(yt+l | Yt) + bias(ỹt+l|t)
2.

In case of an AR(1) process, yt = φyt−1 + ξt, it is rewritten as

yt =

m∑
m=o

φmξt−m.

• φ = 1, it becomes the random walk and the forecast function becomes
horizontal.

• |φ| < 1, the forecasts decay exponentially toward zero. The process is
stationary and invertible.

• |φ| > 1, the forecasts are explosive and noninvertible.

The optimal predictors of yt+l at time t are the expected value of yt+l estimated
at time t with a given observation up to time t:

ỹt+l|t = E(yt+l | Yt).

This predictor is optimal when it has a minimum mean square error (MMSE),
given by equation (21).

The optimal predictors of the AR(1) process are expressed as

ỹt+l|t = φlyt,

if the disturbances are independent, rather than uncorrelated, otherwise it is in
the class of a linear predictor. This expression is known as the forecast function.
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5.1 One step and multi-step prediction

In the general linear Gaussian state space model, the time-invariant Kalman
filter yields a prediction one step ahead, at+1. It is expressed by equation (8).
The optimal prediction of yt+1 at time t can be

E(yt+1 | Yt) = Zat+1 + dt+1.

Now consider the multi-step prediction, that is, predicting future obser-
vations more than one step ahead. Substituting repeatedly in the prediction
equations (8), step by step, up to t+ l yields

at+l = E(αt+l | Yt) =

 l∏
j=1

Tt+j

at +

l−1∑
j=1

 l∏
i=j+1

Tt+i

 ct+j + ct+l.

Its covariance matrix is

Pt+l = E[Var(αt+l | Yt) = TlPtT
l′ +

l−1∑
j=0

TjRQR′Tj′.

For a time-invariant model of the form, the multi-step predictor is

yt+l = Zat+l = ZTlat.

5.2 Prediction under time-variation

In time-variant models, MMSEs of future observations are not always guaran-
teed. The characteristics of the model and the range of parameters affect the
properties of steadiness, stationarity, and invertibility.

5.2.1 Conditionally Gaussian

Since the models are nonlinear, the MMSEs of future observations are not always
guaranteed. They may or may not be linear depending on the basic properties
of the models and the values of some parameters.

5.2.2 Regime switching

If the observations are normal in each regime, it may possible that the optimal
estimators are MMSEs.

5.2.3 Explanatory variable with time-varying coefficients

The linearity in the MMSEs of future observations may or may not depend on
the basic properties of the transition equations and the values of some parame-
ters in the model.
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5.3 Post sample prediction test

Due to complicated properties of financial time series data, a single measure of
forecasting performance analysis may not be sufficient. Four types of statistical
methods are available to evaluate forecast performance:

• The absolute predictive accuracy

– Mean Square Error : MSE = E[(yt − at)2]

– Mean Error : ME = 1
n

∑
(yt − at)

– Mean Percentage Error : MPE = 1
n

∑
[(yt − at)/yt]

– Mean Absolute Error : MAE = 1
n

∑
(|yt − at|)

– Mean Absolute Percentage Error : MAPE = 1
n

∑
[|(yt − at)/yt|]

– The Theil’s U Statistic

• The directional predictive ability

– The Henriksson-Merton test

– The contingency table analysis

• The distributional measure

– The Kolmogorov-Smirnov test

• The entropic measure

– The Kullback-Leibler distance

where at is the optimal predictor of yt.
The weakness of the absolute predictive measures is that the results are

affected by outliers or structural breaks. This weakness can be addressed by
implementing rolling duration or some optimization of a time horizon. On
the other hand, the directional measures do not have that weakness. Outlier
and structural break may not have a strong cumulative impact on the results.
However they only measure the direction.

5.3.1 The mean squared error

The mean squared error is a measure of how close predictions are to actual
outcomes. It is defined as the expected value of the squared errors; that is,

MSE = E[(yt − at)2],

where at is the expected value of yt at time t− 1 at given information Yt−1. On
the other hand, the variance of yt is defined as

var(yt) = E[yt − E(yt)]
2.
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This is a parameter measuring how far variables lie from the expected value. It
describes either the actual value or theoretical value. If these variables are not
fully observable, the sample data is used to estimate its variance. It is called
the sample variance. The relationship between the mean squared error and the
variance is described as

MSE = var(yt) + bias(at)
2.

If there is no bias, then var(yt) = MSE(at).
Please note that the MSE is an expectation, therefore it is a scalar and not

a random variable. As a result of squaring of each term, the MSE weights large
errors more heavily than small ones; this property becomes a disadvantage in
many applications. In this case, the mean absolute error is one of alternatives.

5.3.2 The Theil’s U statistic

Theil’s U statistic is widely used to evaluate forecasts. Two types of U statistic
are available for the measures of forecast performance. One shows how close
actual and forecast series are; and the other compares the forecast accuracy of
the model with naive forecasts.

The U1 statistic is obtained by

U1 =

√∑n
t=1(ȳt − yt)2√∑n

t=1 ȳ
2
t +

√∑n
t=1 y

2
t

,

where ȳt is the mean of yt. U1 is a range between 0 and 1. The closer the value
is to zero, the greater the forecasting accuracy is.

The U2 statistic is

U2 =

√√√√√√
∑n−1
t=1

(
yt+1−ȳt+1

ȳt

)2

∑n−1
t=1

(
ȳt+1−ȳt

ȳt

)2 .

U2 = 1 indicates no difference between the naive forecast and the forecast from
the model.

5.3.3 The Henriksson-Merton test(HM) and the contingency table
χ2 analysis

Henriksson and Merton (1981) proposed a measure of directional predictive abil-
ity in which the direction of a forecast generated by a given model is compared
with the direction of real price movement. The HM test introduces the 2 × 2
contingency Table 1. The HM test statistics is given by

HM =
n11 − n10n01

n√
n10n01n20n02

n2(n−1)

∼ N(0, 1).
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actual
up down

predicted up n11 n12 n10

down n21 n22 n20

n01 n02 n

Table 1: Contingency table

We can apply the Chi-square test to the 2 × 2 contingency table (Please see
Table1). Suppose that certain events are observed and summarized in ith bins
and their expected number is drawn from some known distribution. The number
of actual events in the ith bin and its expected number are assumed to be ni
and mi, respectively. Then the Chi-square statistics are given by

χ2 =

I∑
i

(ni −mi)
2

mi
,

where I is the total number of bins.
We can extend this analysis to the 2× 2 contingency table. The Chi-square

statistic is

χ2 =

2∑
1=1

2∑
j=1

(
nij − ni0n0j

n

)2
ni0n0j

n

∼ χ2(1),

where χ2(1) is a χ2 distribution with one degree of freedom. The null hypothesis
is that the volatility of actual data is independent of the volatility of predictions.

• H0 : p01
up = p0

upp
1
up

• H1: p01
up ≤ p0

upp
1
up,

where p01
up is the probability of actual and predicted value “up.” p0

up and p1
up

represent the probability of actual value up and the probability of predicted
value up, respectively. As you can see, the Chi-square statistic is larger as the
n11 and n22 or the n12 and n21 dominate the events. The Chi-square does not
show which has happened. Therefore we need another measure to identify the
predictability such as the confusion rate CR:

CR =
n12 + n21

n
.

When CR > 0 then

• H0 : χ2 < χ2
0

• H1 : χ2 ≥ χ2
0 .

The statistic is larger than the critical value, and the null is rejected.

27



5.3.4 The Kolmogorov-Sminov test

When a set of realizations is continuous and has a one dimensional distribu-
tion, the Kolmogorov-Sminov (KS) test is applicable as a nonparametric test to
compare a sample with the normal distribution. The overall difference between
the cumulative distribution function(cdf) of the given sample and the cdf of the
normal distribution can be measured by the absolute value of the area between
them. The KS test uses the maximum value of the absolute difference between
two cumulative distribution functions. The KS statistic is defined as

D = max |f(x)− p(x)|,

where f(x) and p(x) are the cdf of the normal distribution and the cdf of a
given empirical distribution, respectively. The p-value of an observed value of
D is obtained from

QKS([
√
T + 0.12 + 0.11/

√
T ]D),

where T is the sample size. It follows the KS distribution given by

PKS(z) = 1− 2

∞∑
j=1

(−1)j−1 exp(−2j2z2),

=

√
2π

z

∞∑
j=1

exp−(
(2j − 1)2π2

8z2
),

and
QKS(z) = 1− PKS(z),

for all z > 0.

• H0 : the disturbances are normally distributed

• H1 : the disturbances are not normally distributed.

These are restated as:

• H0 : z ≤ z0

• H1 : z > z0.

This is a two-sided test.
Alternative tests are the Kuiper’s test, the Cramer-von Mises test, and the

Anderson-Darling test.

5.3.5 The Kullback-Leibler distance

We can define entropy of a distribution p,

H(p) = −
I−1∑
i=0

pi ln pi,
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where p denotes a distribution with outcome i and its associated probability pi.
The entropy is zero when one of the pi is unity and all other outcomes are zero.
It takes on the maximum value when all pi are the same.

Kullback Leibler distance is defined as

D(p; q) =
∑

pi ln
pi
qi
,

where p is a distribution and q is some other distribution. It is also called the
relative entropy. Using the fact of ln a ≤ a− 1, we can prove its nonnegativity,

−D(p; q) =
∑

pi ln
qi
pi
≤
∑

pi

(
qi
pi
− 1

)
= 1− 1 = 0.

If two distributions are identical, then the Kullback Leibler distance between
two distributions is zero.

Let us consider that the random variable X follows the binomial distribution
with parameters n and q in a coin toss: n is the total number of trials; q is the
probability of success in n independent trials. The probability of getting k
successes in n trials is given by

Pr(X = k) =n Ckq
kqn−k,

for k = 0, 1, 2, . . . , n, where

nCk =
n!

k!(n− k)!
.

This is the binomial coefficient when n chooses k. We can use Stiring’s formula
for large factorials: M ! =

√
2πM(m/e)M and rewrite the above formula:

Pr(X = k) = expn[−p ln(p)− (1− p) ln(1− p) + p ln(q) + (1− p) ln(1− q)]
= e−nD(p;q),

where p = k/n. Please refer to more rigorous discussion in Aoki (1996).

6 Conclusion

We have looked at four types of financial time series modeling: the EWMA,
the ARIMA, the time-invariant state space model and the time-variant state
space model. The time-variant models are reduced to the ARIMA class models
with certain restrictions. These restrictions originated from the invertibility of
the ARMA model. They are not disadvantages of the state space model. This
shows that the state space model has a more flexible structure, created by the
number of disturbance terms. In general, the state space models have more
than one disturbance term, while the ARIMA model has only one disturbance.

In addition, the state space models may be a more flexible way to handle the
wide variety of complex financial time series. For example, stochastic volatility
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models have the potential to replicate a given observation. The regime switching
model applied to the stochastic volatility model may generate data more consis-
tent with a given sample in the long-run. When we use these models in applied
work, we have to carefully examine the parameter space in which they are in
steady state. We have to know that the optimal predictor is just the expected
value of yt+l conditional on the given information at time t, and that it only
provides the conditional distribution of future observations with the MMSEs.

Measures of prediction performance may or may not be useful depending on
how one uses them, and in what kind of situations. We cannot have deterministic
solutions.

Prediction is an essential part of financial trading and risk management.
However, it is rarely an end in itself and please note optimal predictors are not
accurately “fortune telling”.
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