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Abstract

Analyzing historical data of price indices we find an extraordinary growth phe-
nomenon in several examples of hyper-inflation in which price changes are approx-
imated nicely by double-exponential functions of time. In order to explain such
behavior we introduce the general coarse-graining technique in physics, the Monte
Carlo renormalization group method, to the price dynamics. Starting from a micro-
scopic stochastic equation describing dealers’ actions in open markets we obtain a
macroscopic noiseless equation of price consistent with the observation. The effect of
auto-catalytic shortening of characteristic time caused by mob psychology is shown
to be responsible for the double-exponential behavior.
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1 Introduction

In ordinary markets prices fluctuate up and down fairly randomly as typi-
cally observed in foreign exchange markets or in stock markets. Inflation is
the special economic situation in which prices apparently move monotonically
upward and the value of money decreases rapidly. There are many examples
of inflation not only in the history [1] but even now some countries are facing
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with the fear of inflation. Especially so-called the hyper-inflation is a kind
of breakdown of currency system devastating the whole society. Detection of
hyper-inflation in its early stage might contribute to avoid the tragedy, how-
ever, no such tool exists at present as scientific description of inflation has not
been established yet.

2 Empirical laws of inflation

The worst inflation in the history occurred in Hungary right after the world
war II. The exchange rate of 1 US dollar was about 100 Pengo in the beginning
of July 1945. After one year the exchange rate became 6 × 1024 Pengo in
the middle of July 1946. Here, the inflation rate estimated by exchange rate
difference is of order of 1022 per year. This terrible inflation was stopped by the
introduction of the present Hungarian currency Forint in July 1946 which was
exchangeable with Pengo with the exchange rate 1 Forint = 4 × 1029 Pengo,
which exceeds the symbol of large numbers, the Avogadro number, 6× 1023 !.

The time evolution of exchange rate of US dollar during this period is shown
in Fig.1 in semi-log scale. As known from this figure the exchange rate grew
exponentially until t = 220 days measuring from 1st July 1945, and after
that the growth became obviously faster than an exponential function. At
that time, government of Hungary introduced a new unit of currency called
the Adopengo. During the hyperinflation these two currencies, Pengo and
Adopengo, coexisted in the market. The utility value of the Pengo was de-
creased by appearance of the new currency. We guess that the state of two
currencies enhanced the decline of Pengo. In Fig.2 the exchange rates for
t > 220 are re-plotted in double logarithmic scale. The points are clearly on a
straight line, demonstrating that the rapid growth is nicely approximated by
a double exponential function.

p(t) ∝ ea1t, for t < 220 (1)

eb1eb2t

, for t > 220 (2)

where a1, b1 and b2 are positive constants.

The single exponential growth is a generic property of inflation and it can be
found widely in the historical data. The double exponential growths are rare
events, however, we found 6 other examples as listed in Table 1. In economics
the terminology ”hyper-inflation” is used in rather rough sense to specify very
heavy inflation. An example of definition is ”inflation rates per month exceed
50%” [2]. All examples of the double exponential growth in Table 1 belong to
the worst extremes in the hyper-inflation category.
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Fig. 1. Semi-log plot of exchange rates of Pengo for 1 US dollar. The origin of the
time axis is July 1st 1945. The straight line shows an exponential growth fitted for
t < 220.

Fig. 2. The part of t > 220 of Fig.1 is re-plotted in double logarithmic scale. The
straight line shows a double exponential fitting.

Fig. 3. Semi-log plot of price index in Italy. The dotted line shows the theoretical
curve fitted by a negative double logarithmic function, Eq.(3).
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Table 1
Examples of double exponential growth. The value of B denotes the expoenent B
in Eq.(7). The value of b2 in Eq.2 is given by b2 = ln(B1/2).

Country Currency Period B(∆t = 1year)

BOLIVIA bolivianos 1970 - 1985 2.8

PERU intis 1970 - 1990 1.4

ISRAEL sheqalim 1970 - 1985 1.4

BRAZIL cruzeiro 1970 - 1994 1.3

NICARAGUA cordoba 1985 - 1991 1.3

HUNGARY pengo 1946 Jan. - 1946 Jul. 2.7∗

GERMANY mark 1922 Nov. - 1923 Oct. 2.4∗

*: The value of B for ∆t = 1 month (the value for 1 year is estimated by B12).

Table 2
Examples of negative double exponential growth. The value of B denotes the ex-
poenent B in Eq.(7). The value of c2 in Eq.3 is given by c2 = − ln(B1/2).

Country Currency Period B(∆t = 1year)

ITALY lire 1980 - 2001 0.8

SOUTH AFRICA rand 1986 - 2000 0.8

EGYPT pound 1992 - 2000 0.7

PORTUGAL escudos 1984 - 1997 0.7

ICELAND kronur 1983 - 1995 0.6

GUINEA francs 1980 - 1997 0.6

Another functional form of inflation growth can be found at the ending of
inflation period. In the case of Hungary the inflation stopped quite suddenly,
however, there are cases that inflation stabilized rather slowly. In Fig.3 the
growth of annual price index in Italy is plotted in semi-log scale. Here, the
local slope of the price index becomes gentler year by year. The data points
from 1978 to 2000 are well approximated by the following negative double
exponential function as fitted by the dotted line:

p(t) ∝ e−c1e−c2t

, (3)

where c1 and c2 are positive constants. There are many examples of this type
of relaxations as listed in Table 2.

It is known that the inflation phenomenon is mainly caused by widespread
of so-called ”inflation mind” which is the expectation of general people that
prices will rise in the near future [3]. The central bank’s excess supply of
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money can contribute to inflation, however, hyper-inflation can not be realized
without general people’s inflation mind because the effect of cash supply is
limited in the whole economy. In fact, in the case of Austria (1921-1924), the
price index stabilized automatically although the central bank was keeping an
excess money supply policy [4].

3 Stochastic dynamics of market prices

In 1956 Cagan[2] introduced a set of evolution equations of prices for descrip-
tion of inflation, which are consisted of market price p(t) and the people’s
averaged expectation price p∗(t). In the theory these two prices evolve due to
the linear positive feedback mechanism; an upward change of market price in
a unit time induces rise in the people’s expectation price, and such anticipa-
tion pulls up the market price ・・・. As a result the exponential growth of
market price in inflation can be naturally explained, however, the theory fails
to explain the double exponential behaviors. In order to explain the hyper-
inflation, Cagan assumed that the inflation rate is dependent on the rate of
increase of money supply, and introduced a model of hyper-inflation. However,
as mentioned above the effect of money supply is known to be limited, so in
the following discussion we neglect the effect of governmental policy of money
supply, instead we introduce an effect of open market fluctuations.

We introduce the following set of stochastic equations of p(t) and p∗(t) as a
generalization of Cagan’s approach:

p(t + ∆t)/p(t) = (p∗(t)/p(t))A(t)ef(t) (4)

p∗(t + ∆t)/p∗(t) = (p(t)/p(t − ∆t))B(t)ef∗(t) (5)

Here, the last terms, f(t) and f ∗(t), represent random noises, and the original
Cagan’s equation is obtained for the special case that A(t) = 1 and B(t) = 1
with no noises. The meaning of the coefficients A(t) and B(t) can be explained
as follows. By taking logarithm and expanding the variables assuming that
∆t is close to 0, Eqs.(4) and (5) coincide to the known set of linear stochastic
equations describing microscopic properties of market price changes [5].

The coefficient A(t) is equivalent to the inverse of price rigidity characterizing
the market price response to the change of demand and supply. The value
of A(t) is larger than 1 when market orders are rich, such as the case that
many people rush in the market. The coefficient B(t) is called as the dealer’s
response to the market price changes which characterizes people’s averaged
expectation of the future price. The value of B(t) is larger than 1 if people ex-
pects larger price change in the near future than that of present market price
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change. Various market behaviors can be characterized by these coefficients,
for example, markets are stable when both A(t) and B(t) are less than 1, bub-
bles and crashes occur when A(t) < 1 and B(t) > 1, and damping oscillation
can be found when A(t) > 1 and B(t) < 1 [6]. The widely observed open
market property that price changes follow a distribution with fat-tails close
to a power law [7] is known to be attributed to the random fluctuation of the
multiplicative coefficient B(t) [8]. An approach of real time characterization
of market condition in terms of A(t) and B(t) is also in progress [9].

4 Derivation of macroscopic market equation using renormaliza-
tion

In the bubble behaviors prices grow exponentially with time, which are similar
to the observed exponential growth in the inflation data. This implies that the
bubble behaviors in markets may have a similar mathematical structure with
the inflation although the time scales can be very different. In order to derive
a macro-scale dynamics of prices, we apply the idea of renormalization group
method developed in statistical physics to the price equations.

The Monte Carlo renormalization group method is based on coarse-graining
procedures as follows: First, we fix the parameters such as the mean values and
variances of the random variables A(t), B(t), f(t), f ∗(t) in Eqs.(4) and (5) with
a small time step ∆t. We numerically simulate price changes repeatedly by
using different random numbers. Then, we observe the resulting price changes
in a discrete manner with a large time resolution ∆t′. Assuming that the large
scale price changes follow the same form of equation with different combination
of parameters, we estimate the map from the parameter sets for small ∆t to
those for large ∆t′. Using this map the parameter values for the macroscopic
dynamics can be deduced by repeating the mapping in the parameter space.

By repeating the mapping we can find that the price dynamics converges to
the following simple combination of non-random parameter values for a wide
range of initial parameters in the large-scale limit:

A(t) = 1, B(t) = B, f(t) = 0, f ∗(t) = 0, (6)

where B is a non-trivial positive constant. This result means that the ran-
dom noise terms in Eqs.(4) and (5) are negligible in the large scale limit as
intuitively demonstrated in Fig.4.

From Eqs.(4) and (5) with the parameter values given by Eq.(6) we have the
following simple deterministic nonlinear equation for the macroscopic price
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Fig. 4. An example of coarse-grained view of price fluctuations. Numerical sim-
ulation is done in the microscopic scale as shown in the bottom. Observing the
price fluctuations in a larger scale (the middle), the fluctuations become relatively
smaller, and in the macroscopic level (the top) the price motion looks following a
smooth dynamics. Note that microscopic price fluctuates up and down even in a
hyper-inflation state.

evolution:

p(t + 2∆t)/p(t + ∆t) = (p(t)/p(t − ∆t))B. (7)

This equation is solved as the following,

p(t) ∝




ea1t, B = 1

eb1eb2t
, B > 1

e−c1e−c2t
, B < 1

(8)
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where a1 = ∆t−1 log P (∆t)
P (0)

, b1 = B
1

2∆t

Bdt−1
log P (∆t)

P (0)
, b2 = log B, c1 = − B

1
2∆t

Bdt−1
log P (∆t)

P (0)
,

c2 = − log B . We have the exponential price growth consistent with Eq.(1)
when B = 1, while for B > 1 the solution becomes the double exponential
function of time identical to Eq.(2). In the case of B < 1 gives the price evo-
lution of the negative double exponential function of Eq.(3) that converges to
a stable price level. These three types of price motions are the basic behaviors
in the large-scale limit consistent with the observation in the historical data.

5 Discussion

The meaning of Eq.(7) can be recognized more clearly by introducing a new
quantity T(t) which is the time interval needed to make the price double:

p(t + T (t)) = 2p(t). (9)

Considering a continuum limit we can show that T (t) satisfies the following
differential equation:

dT (t)

dt
∝ (1 − B)T (t). (10)

Obviously, T (t) is constant for B = 1 and it decays or grows exponentially
with time for B > 1 and B < 1, respectively. Such functional dependence is
directly checked from the inflation data of Hungary as shown in Fig.5. We
can confirm an exponential shrink of T (t) for the double exponential period
t > 220 as expected.

This quantity, T (t), characterizes the speed of time in the mob psychology
in the following meaning. In the situation of an ordinary exponential infla-
tion people’s clock speed is nearly constant. When the price begins to grow
faster than the expected inflation rate, then the people’s clock speed is ac-
celerated auto-catalytically and the society falls into the double exponential
hyper-inflation phase.

By generalizing the renormalization technique introduced in this paper it may
be possible to establish the method of estimating the key parameter B in
Eq.(7) from given data of microscopic market price fluctuations. Such a tech-
nique will hopefully pave the way to conquer the fear of inflation in a scientific
manner.
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Fig. 5. The change of time interval (days) needed to double the price in Hungary
1946. The abscissa is the same as in Fig.1. The straight line shows an exponential
decay consistent with Eq.(10).
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