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Abstract. This papers presents the model of the dynamics process of switch-
ing in the strategy adopted by a large number of agents according to their
views of what they deem as the most advantageous strategy in relation to
the behavior of other agents and/or exogenous environments. The process of
switching strategy is modeled by master equation by suitably specifying the
transition rates of continuous time Markov chains. The computer simulation
explains the effects of demand-supply imbalance created by short-medium
term traders in the dollar-yen foreign exchange market.

1 Introduction

We examine nonlinear dynamics generated by a large number of heterogeneous
agents when they switch the strategy or go in/out of the strategy. They change
the strategy or join/get out the strategy over time, because they can not
foresee the consequences of their choices exactly at the moment of their choice.
Consequences of their choices are distributed stochastically, and over time new
information may become available as to desirability of some choices over the
others.

Consequently, clusters of agents of the same choices may develop and dis-
appear over time. Aoki (1996,2002) has discussed problems for the case where
each agent has binary choices. As in these cases, we use the master equa-
tion, that is, the backward Chapman-Kolmogorov equation, to discuss the
dynamics of agent behavior.

In the late 1980s and until the mid 1990s, Hogg and Huberman (1991),
Youssefmir and Huberman (1995) or Adjali, Gell and Lunn (1994), and their
collaborators have published a number of papers in which agents have many
choices over resources and strategies. While these authors use error func-
tions to express distributions of the consequences of choices. We use Ingber’s
approximation to the error function and introduce Gibbs distributions into
transition rates of continuous time Markov chains.
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Here, the computer simulations focus on situations that agents implement
two strategies in dollar-yen foreign exchange market.

2 The model

Suppose that there are a fixed number K strategies. The total number of
agents is fixed at N. At any time ni is the number of agents with strategy i,
where

∑
i ni = N. The master equation describe how the probability Pr(n, t)

evolves over time, where n is the vector whose i-th component is ni. We say
agent is of type i when it uses strategy i.

The probability Pr(n, t + ∆) increases over Pr(n, t) by the net inflow of
probability flux, that is, the difference between the inflow and outflow, where
inflow arise from some agent of type j deciding to drop strategy j and adopting
strategy i, j 6= i, and outflow is due to one agent of type i deciding to switch
to a different strategy.

Since we model those processes as birth-and-death type Markov process,
at most one such strategy switch takes place over a small time interval ∆.

The master equation is derived from

Pr(n, t + ∆) = Pr(n, t)−
∑

n′ 6=n

Pr(n, t)ω(n,n′) +
∑

n′ 6=n

Pr(n′, t)ω(n′,n)

Assuming that λ is the rate of strategy examination over time, denoting
the number of agents of type j before revision by n′j , and let ηj,i the probability
that strategy i is regarded by agent j to be the most desirable, we write the
transtion probability over time interval ∆ as

ω(n′,n) = n′jηj,i(n′)∆

Aoki(2002) has shown that on the derivation that η has a Gibbs distribu-
tion eβgj,i/Z, where Z is a partition function, where β is a parameter which
embody the uncertainty associated with this switch of strategy, and gj,i is
the expected difference in the discounted present value of adopting strat-
egy j over strategy i. Here we use Ingber’s approximation to error functions
for approximating transition rates in the way described by Aoki (1996,page
133;1998;2002,chap 6). Hence the master equation is rewritten as

Pr(n, t + ∆)− Pr(n, t) = λ∆(O − I),

where O − I stands for inflow - outflow, where

I =
∑

i

∑

j 6=i

n′jηiPr(n′, t),

and
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O =
∑

i

∑

j 6=i

njηjPr(n, t),

up to o(∆).
Dividing both sides by ∆ and letting it go to zero we arrive at

∂Pr(n, t)
∂t

= λ(O − I)

3 Interacting or No interacting patterns

Calculating ηi for interacting patterns: Let Vi be the random discounted
present value of using strategy i, i = 1, . . . , n for some specified length of time.
Define ηi,j to be the probability that agents who have been using strategy i
want to switch from strategy i to j,

ηi,j(x) = Pr(Vj ≥ max
i 6=j

{Vi}|x)

Under certain sets of assumptions, it is known that this expression is given
by a Gibbs distribution, Aoki(2002,Sec.6.3). We can use a program called
MULNOR, introduced by Shervich(1984,1985), to calculate such probabilities
with agents interactions.

Calculating equilibrium probability for no interacting patterns
Master equation with entry and exit without any switching among strategies
provides the equilibrium probability of the strategy based on Poisson distri-
bution.

P (θ = ν) = e−θ θν

ν!
where θ = α/(µk) ; α:the number of entry; µk:the number of exit: k:the
number of traders.

4 Simulation

The simulation is made for identifying how the behavior of trading groups
with the short-medium term horizon affects price movements in the foreign
exchange market. We focus on two types of traders in the market: trend follow-
ers and contrarians. Trend followers buy(or sell) currency when the currency
is appreciating(or depreciating). They are divided into type 1a and type 1b.
Type 1a is a upward trend follower who gets profits when the market has
upward trend. There are large number of trading strategies for upward trend
viewers, we use option strategies to replicate their behavior. The trading with
buying calls represents type 1a strategy. Type 1b is a downward trend fol-
lower who makes money when the market has downward trend. Buying puts
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represents type 1b strategy. The trend followers switch the strategy from 1a
to 1b or vice versa, depending on their profits and losses. These interactions
are described as birth-death process. Type 1a and type 1b have the master
equation with transition rates that are function of profits and losses.

Type 2 is a contrarian who buy(or sell) the currency when it is depreci-
ating(or appreciating), because they believe that the market will stay in the
range. Selling calls and puts represents type 2 strategy.

We assume that trend followers and contrarians do not change their types
in short-medium term horizon. However, they go in/out the strategy over time
depending on profits and losses of each strategy. Type 1 and type 2 have the
master equations with entry and exit without interacting patterns.

The simulations are made as follows:
1. Trend followers : Trend followers buy one unit(Yen) of at the money

call(or put) with one(or three) month(s) maturity every day. They hold the
positions until the maturity. Simplifying the problems, one(three) month(s)
consists of 20(60) working days. Therefore, the portfolios of options held by
each type include 20(60) different options. A set of daily historical data are
used for the evaluations: spot price, implied volatilities, and domestic and
foreign interest rates. In case of type 1a with one month maturity, the portfolio
are evaluated daily as

V1a(t) =
20−1∑
tp=0

(wt−tp × ct−tp,t − rt−tp)

where ct−tp,t is the value of the call option at time t starting at time t − tp
as the at the money option with maturity of one month, and is evaluated
by using the Black-Scholes type currency option model(M.b.Garman and
S.W.Kohlhagen,1983). wt−tp is the weight of the option and equal to the
inverse of ct−tp,t−tp . rt−tp is the funding cost for the option starting at time
t− tp. Based on the standard deviations and means of V1a(t), we estimate the
rate, η1a,1b(t) by using Mulnor program,

η1a,1b(x(t)) = Pr(V1a ≥ V1b|x(t)) =
∫ ∞

−∞

∫ ∞

a

f(x1a, x1b)dx1adx1b.

The probability of type 1a at time t+∆ based on the set of empirical data
is obtained from

P (n1a, t + ∆) = P (n1a, 0) +
∑
t=0

P (n1a, t)ω(n1a, n1b, t), 0 ≤ P (ni, t) ≤ 1

for any t, where ω(n1a, n1b, t) = l × η1a,1b(x(t)). l is constant over time and
determined as maximizing the profit of trend followers.

Finally, we get the daily value of the portfolio held by the trend followers.
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V (t) = P (n1a, t + ∆)× V1a(t) + (1− P (n1a, t + ∆))× V1b(t)

2. Contrarians : Contrarians sell one unit(Yen) of at the money call and
put with one(or three) month(s) maturity every day and keep these positions
until the maturity. The value of the portfolio is calculated by the same way
as above.

3. Exit and Entry to the strategy : Finally, we calculate the standard
deviation of the portfolio value of both trend followers and contrarians, and
estimate the equilibrium probability of each strategy with entry and exit.

Fig 1a provides the relationship between demand/supply imbalance(60
days) and dollar-yen price movements. Fig 1b provides the relationship be-
tween price increments(60 days) and demand/supply imbalance.

Fig 2a provides the relationship between demand/supply imbalance(20
days) and dollar-yen price movements. Fig 2b provides the relationship be-
tween price increments(20 days) and demand/supply imbalance(20 days).

The decision of entry and exit of each group is made independently,
therefore, there are the imbalance between demand and supply of cur-
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rency(options). This imbalance is balanced by market-maker and day traders
in the real markets, however, we currently focus on the imbalance created by
the short-medium term traders. In general, we can understand when trend
followers dominate the market, they will provide the positive feedback of the
price movements that emerge the trend in the market. On the other hand,
when contrarians dominate the market, the market will stay in the range due
to the negative feedback of the price movements. The imbalance at time t
is obtained by Pn1(t) − Pn2(t) . Fig 1 and 2 show us the simulation results
that explain the demand-supply imbalance affects the price movements in
dollar-yen market.

5 Conclusion

We examine nonlinear dynamics generated by trend followers and contrarians
with short-medium view in the dollar-yen market. Based on the analysis of
computer simulation, we currently conclude that behavior of heterogeneous
agents may be one of the reasons for generating trending or trendless market.
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